
ECE532: Group Report
Image Processing Pipeline with Handwritten Digit

Recognition

Group #6
Richard Barrie
Savo Bajic

Xiaonong Sun (Frank)
Chun Yin Au Yeung (Cyrus)

Professor: Jason Anderson
TA: Camilo Vega

University of Toronto
April 14th, 2023

Contents

1 Project Overview 3

2 Outcome 4

3 Schedule 7

4 Description of Blocks 9

4.1 Camera interface . 9

4.1.1 Camera Configuration . 9

4.1.2 Camera Configuration ROM . 9

4.1.3 SCCB . 9

4.2 Edge Detection . 10

4.3 DeNoise . 12

4.4 Image Compression . 12

4.5 Neural Network . 13

4.6 Threshold Control . 17

4.7 VGA Overview . 17

4.7.1 VGA Driver (Stream to VGA) . 18

4.7.2 Pixel to Stream . 20

4.7.3 Memory IP Blocks . 20

4.7.4 DataMover Controller . 21

5 Design Tree 23

6 Tips and Tricks 24

6.1 Using the DataMover IP . 24

6.2 Using Standard Interfaces . 26

6.3 Neural Network Weights . 27

1

List of Figures

1 The block diagram of the entire system . 3

2 Focused block diagram of the DRAM VGA interface 4

3 Board controls and output layout . 5

4 Camera interface sub-block hierarchy . 9

5 Edge detection flow diagram . 10

6 Edge detection internal buffering . 11

7 Diagram of VGA frame compression . 13

8 Three layer digit recognition neural network model 14

9 Example of the digits in the MNIST dataset used to train our model 14

10 Training and validation loss over number of iterations 15

11 Block diagram of VGA portion (Repeat of Fig. 2) 18

12 PIP scaling demonstrated over source video 19

13 Successful ping-pong buffer testing image (with PIP) 22

14 Bundled block interface ports . 26

15 Unbundled block interface ports . 27

List of Tables

1 Desired and achieved values for the system 5

2 Final FPGA resource utilization . 6

3 Original memory map . 24

4 Memory map after widening data bus . 25

5 Neural net memory requirements . 27

2

1 Project Overview

As we continue into the digital age and develop faster cameras with better resolution, the
need for efficient video processing rises. Because of the huge data throughput used in high
definition video, modern CPUs struggle to keep up with the demand for personal, commer-
cial, and scientific applications.

A key operation in modern image processing techniques such as convolutional neural net-
works is the 2D convolution operation. This relies heavily on multiply-accumulate (MAC)
operations where a ”kernel” of weights is multiplied by the value of the pixels underneath
and then these products are summed. With a simple 3-by-3 kernel, each pixel in the out-
put image is the sum of nine multiplications.

As processor clock speeds plateau, accelerators are imperative to keep up with faster and
higher definition video. Fortunately, this task is well-suited for such acceleration due to its
repetitive nature.

The goal of our project was to create a reliable, hardware-accelerated image processing
pipeline. We selected the Nexys 4 DDR board for its VGA output capability, and the
OV7670 VGA camera module from Omnivision. We had the goal of implementing edge
detection with an algorithm that uses 2D convolution. Customizable image processing
thresholds were desired, so that the user can fine tune the image processing depending
on the lighting conditions. Our initial goals of the were to achieve at least 10 frame per
second video throughput, with a latency under 200ms. The system should also be reliable
with no connection drop or pixel glitches. Figures 1 and 2 show block diagrams of the final
system.

Figure 1: The block diagram of the entire system

3

Figure 2: Focused block diagram of the DRAM VGA interface

From the block diagrams above and the key on the right, it can be seen that the whole
project is purely hardware without using any soft processor. The project was mainly com-
pleted using custom Verilog modules. The Verilog code for the camera interface was based
on an online resource [1].

The SCCB block was modified by flipping the polarity of the communication signals and
the camera configuration settings we used were based on our group’s testing, with help
from another group using the same camera.

The VGA portion made extensive use of Xilinx IP to help interface with the dynamic
memory off-chip (DRAM). At the heart of the VGA portion was a DataMover IP which
was responsible for storing an incoming stream of pixels to a region in the DRAM, while
also drawing pixels from another portion of memory into a stream to be displayed. The
custom Verilog was used to prepare the streams from pixel data, converting stream data to
a VGA signal, and most importantly maintaining a ”ping-pong” buffer for frame data in
the DRAM so that only completely rendered frames were displayed. There was also a pro-
vision for a Picture-In-Picture (PIP) feature to be used for displaying an image over the
frame in the top left of the screen, this used on-chip memory for its data.

2 Outcome

We achieved our original goals, with some additional improvements. The final project
could perform video streaming from a PMOD camera to the Nexys-4 DDR board through
VGA, delivering a consistent output of 60 frames per second without any drops in frames.
We achieved real-time edge detection using 2D convolutions with Sobel filters, as well as
a custom de-noising technique. These have customizable thresholds so that the user can
manually adjust the sensitivity of the edge detection and the denoising, controlled us-
ing switches and buttons for inputs, and incorporating discrete LEDs and seven-segment

4

(HEX) displays for outputs. The controls for these thresholds are shown in Figure 3. A
comparison between the performance of final system and our goal is shown in Table 1.

Criterion Original Goal Achieved

Throughput 10+ FPS 30 FPS
Latency Less than 200 ms 33 ms
Reliability No dropped connections

and pixel glitches
No dropped connections
and pixel glitches

Table 1: Desired and achieved values for the system

In addition to the project’s core functionalities, we incorporated a handwritten digit classi-
fier, using a neural network to further demonstrate the capability of fully hardware-accelerated
image processing. The system was able to accurately detect digits captured by the camera
under a controlled environment. Images from the camera were first compressed to a 28-by-
28 pixel image before classification. The compressed image was displayed using the PIP
feature, and the classified digits were displayed on the HEX display shown in Figure 3

Figure 3: Board controls and output layout

In addition to this, we implemented a ping-pong DRAM frame buffer, which played a piv-
otal role in reducing the amount of BRAM needed, allowing for additional project fea-
tures. The resource usage for our final project is shown in Table 2.

5

Resource Quantity Utilized Percent Utilized Comments

LUTs 33,041 52.12%
LUTRAM 1645 8.66%
Flip Flops 22,422 17.64%

DSP 72 30.00% Used for matrix algebra
BRAM 2.5 1.85% Used for buffers around DRAM

Table 2: Final FPGA resource utilization

In hindsight, we realized that incorporating documentation from the beginning would have
been beneficial. This includes better commenting in the Verilog code, as well as a step to
step guide on how to set up the system. Although our team worked closely together and
documentation was not strictly necessary for our project, it would have saved time and
facilitated knowledge transfer between team members by clearly explaining the project
concept and the work done by each member. Additionally, this best practice would have
prepared us for the possibility of other people picking up the work in the future and would
have been highly useful in an industry setting where collaboration and handovers are es-
sential.

In the event that someone takes over the project, there are several enhancements that we
could implement to improve its functionality and accuracy. The first area of improvement
would be the image recognition system. Our current system has limitations, specifically
with regard to the need for well-written and centered digits. To address this limitation,
one could explore implementing a larger neural network, subject to the available memory
on the FPGA. Additionally, one could consider a convolutional neural network instead of
a simple fully-connected network like we implemented. Furthermore, one could add addi-
tional features to enhance the project’s capabilities. This would include recognizing oper-
ators such as ’+’, ’-’, ’x’, and ’/’, enabling the system to perform expression detection and
give the answer to the detected expression. To accomplish this, image segmentation would
be needed, either through the naive approach of segmenting the field into three equal-sized
parts or with more advanced machine learning algorithms. These enhancements would
make the project an even more versatile and powerful tool, capable of handling more com-
plex image recognition tasks with greater accuracy and efficiency. Another approach to
increasing the project’s versatility is incorporating additional input/output capabilities.
For instance, adding a keyboard interface that enables users to manually adjust the convo-
lution kernels. This would provide greater flexibility and control over the image processing
operations, allowing users to customize and fine-tune the system’s performance to their
needs.

6

3 Schedule

Milestone 1 - Feb. 1

• Research on camera and VGA interface

• Planning on system architecture

Milestone 2 - Feb. 8

• Camera interface block completed and tested in test bench

• VGA block completed and test pattern can be shown on screen

• Convolution core completed and max pooling was tested using test image

• System skeleton based on AXI streaming was set up

Milestone 3 - Feb. 15

• BRAM frame buffer completed

• Integrating camera with frame buffer and VGA interface

• Rework on convolution core to gain 10X LUT utilization improvement

Milestone 4 - Mar. 1

• Edge detection core completed and was tested using test image

• Debugged VGA timing handling issue

– Solved the fame shifting issue at the start of each frame

• Replaced AXI stream with direct parallel connection instead

Major achievement - Black and white image from the camera can be shown on the
VGA monitor

Mid-project Demo - Mar. 8

• Debugged camera configuration issue

– Communication signal bits were flipped, leading to initialization failure

• Integration of the edge detection core with the system

Major achievement - Edge detection could be done in real time on camera feed. Cam-
era could be configured using user defined parameters.

Milestone 5 - Mar. 15

• Denoise algorithm was completed and implemented

– Image after edge detection was more clean by filtering out unwanted noise

• Image compression core was completed and implemented

7

– The VGA frame is cropped and compressed into a 28x28 image

• Auto white balance and gain control was realized by finding a proper camera
configuration though testing

Major achievement - Better edge detection algorithm, image compression, better image
quality from the camera

Milestone 6 - Mar. 22

• Trained a single layer linear regression model in Python

– 32-bit integer weights and 4-bit black and white 28x28 Mnist data sets were
used

• The digit recognition model was implemented

– Accuracy was up to 86%

• 7 segment display block was implemented

Major achievement - Preliminary digit recognition

Final Week - Mar. 30

• Trained a three layer neural net in Python

– Accuracy was up to 91.4%

• The 3-layer neural net was implemented

– The top 3 most probable recognized could be shown

• Threshold control block was completed and implemented

– Threshold of edge detection, denoising and image compression can be ad-
justed

• DRAM buffer was completed and implemented

– Frame buffer was moved from BRAM to DRAM to free up more resources

– Enabled proper ping-pong buffering of the frames (only completed frames
were displayed)

• Picture-in-picture feature was completed and implemented

– The compressed image snapshot can be shown on the top left of the moni-
tor

– The snapshot can be scaled into a larger form factor

Major achievement - Digit recognition with much higher accuracy and the ability to
adjust the thresholds for image processing modules in real time

Final Demo - Fully functional system

8

4 Description of Blocks

4.1 Camera interface

The camera interface contains the following three sub-blocks which are Camera Configu-
ration, Camera Configuration ROM and SCCB. The detailed block diagram of the camera
interface is shown in Figure 4.

Figure 4: Camera interface sub-block hierarchy

4.1.1 Camera Configuration

The camera configuration block is a finite state machine block to control the camera con-
figuration process. When a Start signal is received, it loops through the camera configu-
ration address and fetches the respective configuration settings from the camera configu-
ration ROM block. Note that the configuration settings are represented as a 2-byte words
while the SCCB block can only send out 1 byte at a time. Thus, the camera configuration
block also splits the fetched settings into two packets to be sent over in two cycles. The
parsed data and address are then send over to the SCCB block and communicate with the
camera is initialized using the SCCB start signal. A Done signal will be flagged when all
the addresses are looped through to indicate the end of configuration.

4.1.2 Camera Configuration ROM

This block acts as a bank to store the user defined camera configuration settings. The user
can modify the data within this block to test and change for optimal camera settings.

4.1.3 SCCB

This block handles the communication with the camera module. It adopts the SCCB pro-
tocol which is a modified I2C protocol used by Omnivision. As mentioned before, config-
uration data at each address needs to be parsed into two packets and then be sent out a

9

byte at a time to the camera, thus a ready signal is needed to feed back into the camera
configuration block to indicate the receiving of the next data after the first byte is sent
out.

The source of the camera configuration blocks came from a github repository [1] but mod-
ifications were done on the SCCB block. Also, the camera configurations in the Camera
Configuration ROM block were based on our group’s testing as well as the help from an-
other group using the same module.

4.2 Edge Detection

Overview

Edge detection was done using a custom packaged IP block written in System Verilog.
Figure 5 shows an overview of how the block works. The image is processed with a 2D
convolution with a three-by three kernel, called a ”Sobel filter ” [2]. It is processed with
two different kernels, that calculate the vertical and horizontal gradients of the image.
If the image gradient positive and above a threshold, this corresponds to a light-to-dark
edge, and if it is less than zero and and below a threshold, this corresponds to a dark-to-
light edge. To capture both light-to-dark and dark-to-light edges in the vertical and hori-
zontal directions, we take the absolute value of the image gradients in both directions, and
sum them together. We then apply a threshold to pick out the pixels that are edges. We
found that different thresholds were needed to achieve clean edges in different lighting con-
ditions, and so we added a manual threshold setting to our IP block.

Figure 5: Edge detection flow diagram

10

Implementation

4-bit black-and-white pixel intensity values are input to the block serially. An internal
buffer stores 4 full rows of pixel intensity values. Only three consecutive pixel rows are
needed to calculate one row of the convolution output. Once three consecutive rows are
loaded, each 3-by-3 square is passed to a custom multiply-accumulate module that per-
forms the Sobel filter calculation, while the fourth row is being filled up with new pixel
values. Once the fourth row is filled, the rows are switched in a rolling fashion, so that
there are always three consecutive full rows in the buffer, and the fourth row is being filled
with incoming pixel intensity values. Zero-padding is needed along the edges of the image
to keep the input image and output image dimensions the same, to comply with VGA im-
age standards. An example of the internal buffering for a 6-by-6 pixel image is shown in
Figure 6. Each step corresponds to the time to buffer in a new row of pixels. The calcula-
tion of output pixel intensity for the first column of each row is highlighted in pink.

Figure 6: Edge detection internal buffering

11

4.3 DeNoise

After edge detection, we found that there was noise in our image, and so we implemented
a simple algorithm to remove this noise:

Algorithm 1 DeNoise Algorithm

1: for Each pixel p in image do
2: if p is an edge then
3: n← # adjacent pixels to p that are also an edge
4: if n ≥ THRESHOLD then
5: Output pixel is an edge
6: else
7: Input pixel is noise, output pixel is not an edge
8: end if
9: else
10: Output pixel is not an edge
11: end if
12: end for

This algorithm is efficiently implemented using the same method as with the 2D convolu-
tion described in section 4.2. The difference is that instead of using a multiply-accumulate
module on each 3-by-3 window of pixels, we use a new module that counts the number of
pixels adjacent to a pixel that are an edge, and returns 1 if the amount is greater than or
equal to the threshold.

4.4 Image Compression

Compressing an image frame from full resolution VGA (480 by 640 pixels) to a 28 by 28
pixel image before attempting digit recognition allows us to use a much smaller model
without loss of accuracy. 28 by 28 pixels was chosen as our resolution to match with the
MNIST database for handwritten digits [3]. Algorithm 2 shows our algorithm for com-
pressing the image from full resolution 4-bit black-and-white to 28-by-28 pixel 4-bit black-
and-white images using the full dynamic range from 0 to 15 pixel intensity in the output
image. In order to match the MNIST dataset using a black marker on white paper, the
image pixel intensity is inverted (i.e. white number on a black background). Also, we im-
plemented a threshold that sets pixels below a certain intensity to pure black to combat
camera vignetting (the edges of the frame being darker than centre).

The following algorithm was implemented in a custom IP block, which allowed us to achieve
image compression that closely matched with the MNIST database.

12

Algorithm 2 Compression Algorithm

1: for each of the 784 17-by-17 pixel squares Si shown in Figure 7 do
2: ni ← # sum of all pixel intensities in the Si

3: end for
4: min← min(ni) ▷ Find minimum of all 784 sums
5: max← max(ni) ▷ Find maximum of all 784 sums
6: for each ni do
7: ni ← (ni −min)× 15)/(max−min) ▷ Scale sums so that they range from 0 to 15
8: ni ← 15− ni ▷ Invert pixel intensity
9: if ni ≤ THRESHOLD then
10: ni ← 0 ▷ Set pixel intensities below threshold to 0 (pure black)
11: end if
12: end for

Figure 7: Diagram of VGA frame compression

4.5 Neural Network

For digit recognition, we developed a three-layer neural network shown in figure 8, note
that the first layer is only represented as a size 28 array when it should be size 784 for ease

13

of visualization. The input layer is a 1 by 784 matrix, corresponding to the compressed
28 by 28 image from section 4.4. The first hidden layer has 10 neurons, and so the first
weight matrix 784 by 10. The second hidden layer has 10 neurons so the second weight
matrix is 10 by 10, and finally one more 10-by-10 weight matrix is used to produce the
output layer. To accommodate the paramaters for this architecture were stored in dis-
tributed ram on the FPGA. The hidden layers are activated by ReLU activation, while
the output layer utilizes linear activation. Furthermore, we incorporated biasing terms for
each layer to optimize the network’s performance.

Figure 8: Three layer digit recognition neural network model

To train our neural network, we used the MNIST dataset, which contains a collection
of handwritten digits represented as 28-by-28 pixel images. We used gradient descent to
train the network paramaters. Figure 9 shows an example of each digit from the MNIST
dataset, and Figure 10 shows the decreasing loss over 3000 epochs of training. THis al-
lowed us to achieve an accuracy of around 90% correct classifications on our test dataset.
We chose hidden layers of size 10 to balance the network accuracy with the number of
paramaters. Increasing the size to 20 by 20 would increase the memory requirements by
more than a factor of 2, but only improve the accuracy by approximately 3%.

Figure 9: Example of the digits in the MNIST dataset used to train our model

14

Figure 10: Training and validation loss over number of iterations

After training, the weights were processed from floating point numbers to 16-bit integers
for easier multiplication and accumulation in the FPGA. More information on this is availalbe
in section ??. Afterwards, the weights were read into the FPGA’s RAM. To implement the
desired multiply and accumulate, we used a finite state machine with three states for each
of the three layers.

For each layer, one state performs the multiplication, one state adds the biasing term and
one state performs the ReLU activation. The multiplication state is implemented by iter-
ating over the 28 by 28 compressed pixel values in c pixels and multiplying them with the
corresponding weights in W1, and then adding the results to the corresponding element
in the L1 multiout array. The multiplication is done by first sign-extending the 4-bit pixel
value to 5-bit by concatenating a 0-bit to the most significant bit to allow for signed mul-
tiplication. The resulting 32-bit value is then multiplied by the corresponding weight in
W1, which is also a 32-bit value. Finally, the result is added to the corresponding element
in the L1 multi out array. Once all the pixels have been multiplied with their correspond-
ing weights, the state variable is updated to the next state, and the i variable, which keeps
track of the pixel index, is reset to 0. The matrix multiply stage is shown in algorithm 3,
note the second loop is done in parallel (10 multiplications done per cycle), and the master
loop is done sequentially (784 clock cycles to do all multiplication). For subsequent layers,
the weights are changed from W1 n to Wx n.

15

Algorithm 3 Matrix Multiply Algorithm

1: for each of the 784 pixels in the 28 by 28 compressed image do
2: if i ≥ 784 then
3: state← adding in bias state
4: i← 0
5: else
6: i← i + 1
7: for each n in 10 do
8: L1 multi out[n]← L1 multi out[n] + $signed(1′b0, c pixels[i]))×W1 n[i]
9: end for
10: end if
11: end for

In the bias stage, the bias term is added to the output of the previous matrix multipli-
cation step, which was stored in the L1 multi out array. The ”if” statement checks if the
index ”i” is greater than or equal to 10, and if so, the state variable is updated to the next
state and the index is reset to 0. If the index ”i” is less than 10, then it is incremented by
1 and the bias term (stored in the B1 0 array) is added to the corresponding element in
the L1 multi out array. This process is repeated for all 10 elements in the L1 multi out
array. The bias adds stage is shown in Algorithm 4. This stage is done in 10 clock cycles.
For subsequent layers, the bias is changed from B1 0 to Bx 0.

Algorithm 4 Bias Add Algorithm

1: for each of the 10 bias weights do
2: if i ≥ 10 then
3: state← ReLU activation stage
4: i← 0
5: else
6: i← i + 1
7: L1 multi out[i]← L1 multi out[n] +B1 0[i]
8: end if
9: end for

The ReLU stage introduces non-linearity. This stage checks if each of the 10 outputs of
the previous matrix multiplication stage is less than zero. If it is, it sets that output to
zero, effectively ”turning off” that neuron. If the output is greater than or equal to zero,
it remains unchanged. This ensures that the output of the neuron is always non-negative,
which can help prevent the ”dying ReLU” problem that can occur when the output of a
neuron consistently remains negative and prevents the neuron from learning. Once all 10
outputs have been processed, the state variable is updated to move on to the next stage of
the program. The ReLU stage is shown in Algorithm 5.

16

Algorithm 5 ReLU activation Algorithm

1: for each of the 10 outputs do
2: if i ≥ 10 then
3: state← next layer multiply
4: i← 0
5: else
6: i← i + 1
7: if L1 multi out[i] ≤ 0 then
8: L1 multi out[i]← 0
9: end if
10: end if
11: end for

4.6 Threshold Control

The threshold control block stores three user defined values and delivers them to the three
image processing modules. When the centre button is being pushed, it cycles through the
three variables to be changed, which are the edge detection threshold, denoising thresh-
old and the image compression threshold. The user can increase or decrease the selected
threshold by pressing the up or down buttons. The threshold vales are shown on their re-
spective seven segment display with led indicator underneath it to show the currently se-
lected variable to be changed. The threshold values are then passed to the three image
processing blocks for the effect to take place.

4.7 VGA Overview

The video output port available on our development board was VGA, which we operated
at the 640 by 480 pixel resolution offered by our camera. A major problem that we iden-
tified at the beginning of the project was that this system had to output at 60 frames per
second to be compliant with the VGA specifications (and thus be accepted and displayed
properly on a monitor), however the camera only output at 30 frames per second. Thus
some form of frame buffer was needed to show each frame twice, to achieve 60 frames on
the output without blanking or tearing the image on screen.

17

Figure 11: Block diagram of VGA portion (Repeat of Fig. 2)

As shown in Figure 11, the VGA system was roughly half custom Verilog blocks (yellow)
and half Xilinx IP blocks (purple). The Xilinx IP was used to move data from a stream to
a memory mapped location in the DRAM and back into a stream, with our custom code
operating on each end of these streams and controlling the DataMover. All modules in this
section were designed to be AXI-Stream compliant since that was the method used to pass
data into and out of the Xilinx IPs, the final data width used was 64 bits.

In our original design and the one we used for our mid-project demo, we used a different
arrangement for frame memory. We simply wrote to and read from mapped memory in-
side the FPGA as our buffer. This was acceptable for a baseline system but due to the
limited memory resources in the FPGA were not able to store two separate full colour
frames since each frame needed 3,686,400 bits (640 by 480 pixels, 12 bits of colour) and
the FPGA we used had about 6 Mb of memory available. Thus to implement proper ping-
pong buffering of frames we needed to utilize off-chip memory. This brought the benefit of
clearer video once implemented, in addition to the swathes of memory that were freed up.

The majority of our effort in the VGA portion went into tuning the frame buffer system,
namely ironing out bugs with DataMover.

4.7.1 VGA Driver (Stream to VGA)

The endpoint of pixel data in the system is the VGA driver which accepted pixel data us-
ing the AXI-Stream interface and put it on screen sequentially. Although the resolution of
the system was constrained by the resolution of the camera, the colour depth was limited
to 4 bits per colour channel due to the driving hardware on our development board. This
meant that each pixel needed only 12 bits of colour information, which to make mapping
pixels to memory easier - each pixel was padded to make each pixel 16 bits wide, thus each
64-bit stream packet would be buffered and sliced internally to provide data for four pix-
els.

18

The VGA driver ran off a 25.2 MHz clock to meet the specifications for the VGA output.
It uses counters to generate the supporting horizontal and vertical synchronization signals
(HSYNC and VSYNC) in accordance to the specification, as well as to know when to dis-
play the pixels or not due to the blanking region around each video frame. These counters
were also used to verify if the screen output position was synchronized to the incoming
pixel stream. The reason being that the VGA driver intentionally didn’t wait for data to
arrive before it began outputting to the screen, it would merely repeat the contents of the
four pixel buffer until new data arrived. However to make sure that the pixel stream from
the driver did align with the data stream (e.g. output the pixel meant for the top left in
the top left position) the TLAST signal was used for the last packet in an image. If this
arrived at any point other than when expected (displaying the last four pixels) based on
the internal counters, the driver would reset and the next set of pixel data would be drawn
in the first position (top left) of the screen.

As part of the digit recognition, we found it helpful to have a preview of the digit im-
age on screen. This way we could see what the compressed image was on screen that the
FPGA was processing, since it was meant to be drawn over the live video like on a televi-
sion, it was dubbed ”Picture-in-Picture” (PIP). Given the small size of the image (28 by
28 pixels) it was also helpful to also have this image scaled up to be easily seen.

Figure 12: PIP scaling demonstrated over source video

This feature was implemented using a small portion of memory in the the FPGA to store
the image which was then read when the driver was in the the region of the screen and
the PIP enable signal was set. To scale the image the region was increased by some inte-
ger factor (four in our final submission), so each pixel was now repeated. This required
minimal memory on the chip thanks to the small size of the image and that it was in gray
scale - needing only 4 bits per pixel, for a total of 3136 bits of memory. When rendering
the PIP pixels, the pixel data for the live video feed is still sent by the memory manage-
ment system, so the driver discards the pixels it doesn’t use so it can access the ones it

19

does need in the stream later in each row. The final working system is shown in Figure 12.

4.7.2 Pixel to Stream

This block performed the relatively simple task of reading in the pixel data from the pro-
cessing portion and collected four pixels worth of data (12 bits each), and padding them
with zeros into one 64-bit packet to be forwarded along the AXI-Stream to memory.

In addition to this, since the intended ”address” of the pixel was also provided by the pre-
vious stage (a holdover from when we used mapped memory), this was used to raise the
TLAST signal on the final pixel’s packet to synchronize the memory mapped writing be-
tween frames so that the next packet would be written to the start of a frame buffer.

4.7.3 Memory IP Blocks

The direct memory management was handled using Xilinx IP blocks, namely the Memory
Interface Generator 7 (MIG) to interface to the DRAM chip on the board, and the Data-
Mover to write a stream to a memory location and then read that memory into another
stream. There are small FIFO buffers on both sides of the DataMover to help smooth the
flow of data along the streams.

All these IP blocks are used with minimal adjustments to their default parameters, one
change they did share was having the data bus widths all unified to 64 bits. The specifics
of each IP block are broken down per block below.

The buffers are set to different sizes, the buffer feeding the DataMover pixels has a depth
of 512 packets due to it occasionally receiving the pixels for the last few rows in quick suc-
cession from the vision processing, while the buffer to the VGA driver has a depth of 64
since this was enough for steady video rendering. Other differences include the buffer feed-
ing the DataMover has an empty signal, that will be set if the level drops below 8 packets,
the buffer downstream of the DataMover has a full signal that will be set if it has space
for less than 8 packets. These signals are used by controller for the DataMover to know
when there is enough data/space available for a transfer without the DataMover needing
to potentially hold mid-transaction for the stream to move.

The MIG 7 is used exactly as it was generated, connected via an AXI4 interconnect to the
DataMover to store the frame buffers on the DRAM chip this freeing up the memory on
the FPGA and allowing us to store two complete, full-colour frames. However since it was
DRAM and off-chip, the latency was notable which is why the wider data buses and data
bursts were used for transactions to/from the memory to offset these effects.

The DataMover IP was also largely used as provided, to move data from stream to mem-
ory and back again. The main changes applied to it from its defaults was the widening of
the data buses to 64 bits, removing the internal buffering, and having the Stream to Mem-
ory Mapped (S2MM) and Memory Mapped to Stream (MM2S) share the same AXI port
for the memory access to the MIG.

20

4.7.4 DataMover Controller

This custom IP was in charge of issuing instructions to the DataMover to stream data to
and from locations in memory. The purpose of it was to have the DataMover stream the
data from the video processing portion to one region of the memory while reading from
another to provide the VGA output pixels. Once the input frame is completely loaded to
memory, the regions are swapped for the next cycle of reading and writing.

The controller had additional features to improve the performance of the system. One
such feature was monitoring of the levels of the buffers into and out of the DataMover to
ensure that the DataMover wouldn’t start a transaction without the appropriate data/s-
pace available. Another more important feature was that it was responsible for aligning
and synchronizing frame data so that pixels that were displayed where they were needed
on the screen, with no drift. This was important to do since the pixels were delivered as a
stream so there was no location data accompanying them, especially to the VGA driver.

Internally it operates in two, almost entirely independent halves: one for the stream to
memory mapped (S2MM) operation of the DataMover, and the other for the memory
mapped to stream (MM2S). Other than for sharing a reset signal, the only reason for their
connection is to communicate the state of each half of the ping-pong buffer used for the
frame output so they know when to swap memory regions to operate in.

Each half has a counter to keep track of the amount of transfers it had completed and
what the current target address was for the transaction. After each transaction completed
by one half, it tick to up to the next value, and the next transaction instruction to the
DataMover would be generated. Once the required number of transactions for a frame are
completed for one half, they would decide how to proceed. The S2MM half would begin
to write to the next frame region, the MM2S would check if the other frame was complete
and only switch to reading that frame if it is complete.

This behaviour was safe to use because the the MM2S would read at twice the rate data
was written so even if the reader was partially done reading a frame and the S2MM starts
writing to the same region, the S2MM will not catch up to or overtake the MM2S location
for that frame and cause video glitches to appear. However, had the MM2S read location
been put behind the S2MM one in the same region there would be a chance of the MM2S
overtaking it and causing visual glitches, for example if the MM2S started in the region
with the S2MM only a quarter through a frame, they would pass one another halfway
through that frame so the MM2S would stream data from two different frames.

For testing the teams set the system to read the values of the switches on the board and
read them in as pixel colours gradually if a switch was set. This allowed us to ”draw” pat-
terns and control the flow of pixels to ensure the system behaved as expected. E.g. if a
completely white frame was fed in then the next frame was to be painted black, but not
all needed pixels were supplied, then the screen would remain white until all the pixels
needed for a frame came in. An example of such a test is shown in Figure 13, with PIP
also enabled (showing the default PIP pattern) where the team gradually cycled through
colours for a frame and then partially completed a blank frame following it.

21

Figure 13: Successful ping-pong buffer testing image (with PIP)

To help enable synchronization through the VGA system, the controller makes use of the
TLAST signals that are part of the AXI-Stream standard. When sending the last set of
pixels for a frame to the VGA driver, it has the MM2S raise the TLAST flag on the last
stream packet, the VGA driver then reacts to this by resetting if it is received at any point
other than when expected for the last few pixels. This became vital when this was inte-
grated with the camera.

On the other end, to ensure that the pixels from the video processing are written to the
right places in the memory the controller monitors for the TLAST signal on the incom-
ing data. The controller will only move the S2MM to the other region of memory once the
internal counter indicates that the required number of transactions to memory have been
performed for a frame and that the TLAST signal has been observed (indicating the video
system has sent the final pixel for a frame, thus the next pixel will be the start of a new
frame). If the counter reaches the expected number of transactions, the controller will keep
writing the data to the last portion of the frame buffer to discard data in the buffer until
the TLAST signal is received. This does cause the one frame to be incorrect, however this
is only something that occurs in the transient state following system resets or camera re-
configuration and is quickly resolved and overwritten once a two more frames make it in;
this has not been observed to occur in regular operation.

22

5 Design Tree

We have uploaded our project to a GitHub repository available https://github.com/
richard259/G6_imageprocessing. The resources in this directory provide a complete
representation of our project, adequate for a future developer to use, modify and improve
on our project. In this section of the report, we discuss the structure of our GitHub repos-
itory, and provide a description of some of the important files and directories:

/doc This directory contains documentation relevant to our project

Final Presentation.pdf The slides for our final presentation

Final Report.pdf This report

/project This directory contains our top-level Vivado project

camera dram 03 25.xpr - Vivado project file

/camera dram 03 25.srcs - Design and simulation source files

/constrs 1/imports/Downloads/Nexys4 Master.xdc - Design constraints
file

/sources 1/new - Custom Verilog modules

/sources 1/imports - Custom Verilog and memory files for:

• DRAM frame buffer and pixel stream

• Neural network weights

• Camera Configuration

/sources 1/bd - Top-level block design

/IP This directory contains our custom packaged Vivado IPs. These IPs are referenced
in the top-level Vivado project.

/Edge Detection V4 - Edge detection IP block

/project 1 - Vivado project directory

component.xml - Vivado IP file

edge detection.sv - Edge detection top-level module

mac.sv - Multiply-Accumulate sub-module, used in edge detection module

edge detection tb.sv - Testbench for edge-detection block

/DeNosie V2 - De-noise IP block

/project 2 - Vivado project directory

component.xml - Vivado IP file

de noise.sv - De-noise top-level module

mac.sv - Multiply-Accumulate sub-module

de noise tb.sv - Testbench for de-noise block

23

https://github.com/richard259/G6_imageprocessing
https://github.com/richard259/G6_imageprocessing

/Python This directory contains the Python code used to train the neural network
and save the parameters to .mem files

3 layer.ipynb - Main file for training network and saving parameters

data utils.py - Helper functions, from the course ROB313

mnist small.npy - MNIST dataset

6 Tips and Tricks

6.1 Using the DataMover IP

Most of the work put into the VGA subsystem went into wrangling the DataMover to our
will, roughly between a week or two of development. The reasons being its odd collection
of peculiarities, some of which seem to be known and experienced by others from the re-
search we did. Below are our tips when working with it to more quickly diagnose your is-
sues and address them.

It may be worthwhile for future students to avoid this IP and evaluate if an open-source
alternative such as WB2AXIP [4] is a viable replacement for it.

Selecting transaction properties and validating their behaviour in memory

Changing the properties of transactions, namely data width and allowed burst size, caused
the DataMover’s behaviour when writing to mapped memory to change in ways that were
not expected nor explained in documentation provided for them. So after deciding on a
set of properties to use, we suggest one does some tests writing controlled data to memory
and seeing how it is written using a memory viewer or some alternative method such as
decoding AXI exchanges using the Integrated Logic Analyzer.

The reason for this tip is that when we started development of the system we were origi-
nally using a 16-bit data bus (one pixel) with bursts of 64 transactions. As expected, the
memory from our specified start location was then a continuous stream of our expected
pixel data until all pixels were written. As an example, using a value of 0x0FFF for each
pixel in a burst of 24 pixels, starting from an address of 0x80000000; the memory would
look like in Table 3. This is what is expected, the stream being recorded in an uninter-
rupted portion of memory starting at the address specified.

Address Bytes 0-3 Bytes 4-7 Bytes 8-B Bytes C-F

0x80000000 0x0FFF0FFF 0x0FFF0FFF 0x0FFF0FFF 0x0FFF0FFF

0x80000010 0x0FFF0FFF 0x0FFF0FFF 0x0FFF0FFF 0x0FFF0FFF

0x80000020 0x0FFF0FFF 0x0FFF0FFF 0x0FFF0FFF 0x0FFF0FFF

Table 3: Original memory map

24

However when we decided to use a wider data bus (64-bits) with shorter bursts (8) in an
effort to reduce congestion on the AXI bus, the data in the memory no longer acted as ex-
pected. We noticed that the DataMover was now skipping alternating regions of memory,
it would write one packet of 64 bits (eight bytes) then skip an equivalently sized region of
memory before the next packet. Looking at the memory map the uninitialized memory
was visible side by side with the controlled input data. Repeating the previous example
transaction would produce a result like shown in Table 4.

Address Bytes 0-3 Bytes 4-7 Bytes 8-B Bytes C-F

0x80000000 0x0FFF0FFF 0x0FFF0FFF 0xDEADBEEF 0x13371337

0x80000010 0x0FFF0FFF 0x0FFF0FFF 0x0420FACE 0xCAB0CAB0

0x80000020 0x0FFF0FFF 0x0FFF0FFF 0x8BADF00D 0x69696969

0x80000030 0x0FFF0FFF 0x0FFF0FFF 0x0D15EA5E 0x01234567

0x80000040 0x0FFF0FFF 0x0FFF0FFF 0xDEADFA11 0xD0D0CACA

0x80000050 0x0FFF0FFF 0x0FFF0FFF 0xBADDCAFE 0xB0000000

Table 4: Memory map after widening data bus

Detecting this behaviour took a while, since it appears the the DataMover’s read opera-
tions follow a similar skipping scheme so luckily as long as the address is the same for the
read and write, the the data will be passed through without issue. We had lots of space
in the DRAM for our two frames so we resorted to simply doubling the address steps we
made through memory to compensate, to prevent ”shingling” where a later write would
overwrite a portion of data present beforehand.

Check if the DataMover is buffering data internally

Another one of the DataMover’s oddities was that it held a small internal buffer, and it
was not large enough for an entire burst of data! The recommendation for this is to probe
the AXI bus out of the DataMover to the memory to see if this is present or not by com-
paring the data sent out of the DataMover to what was expected. Based on the findings
adjust your system as needed.

In our project this manifested as an internal buffer of four of the 64-bit packets, while us-
ing burst sizes of eight on the S2MM, which was filled with data on reset. In our project
this meant that the image had a few pixels from the right side of the image loop around
to the start of the next row. Initially we thought this meant that one entire burst was off
so we adjust the controller to counter this, but since it was only half a burst that was off
there was now the leftmost portion of the frame rolling back to the right part of the dis-
play.

Eventually we discovered this and were unable to reliably counter this on the S2MM side
with the controller, so we had the MM2S operations from the controller adjusted instead
to deal with this shift in written data. The write operations start at the base address for

25

each frame region, but the reads for MM2S start at this offset from the base address and
there is also a partial read of the other region’s start to get the last few pixels that were
carried across due to this buffer.

6.2 Using Standard Interfaces

In this project we made use of standard interfaces to link parts of our project together, no-
tably the ASI-Stream protocol, and essentially the BRAM protocol for our original mem-
ory mapped operations. This meant that there were a lot of connections that ran from one
IP block to another in parallel. To help tidy up the block diagram, it was a game-changer
to use proper bus port definitions to flag each port that was part of a single interface, for
example for our AXI stream ports we bundled them with the following structure:

// S2MM Ports
(∗X INTERFACE INFO= ” x i l i n x . com : i n t e r f a c e : ax i s : 1 . 0 S2MMCMD TDATA” ∗)
output [7 1 : 0] s2mmCommandData ,
(∗X INTERFACE INFO= ” x i l i n x . com : i n t e r f a c e : ax i s : 1 . 0 S2MMCMD TREADY” ∗)
input s2mmCommandReady ,
(∗X INTERFACE INFO= ” x i l i n x . com : i n t e r f a c e : ax i s : 1 . 0 S2MMCMD TVALID” ∗)
output s2mmCommandValid ,

This meant the difference between the a clean and single connection as shown in Figure
14 to having to ensure each is connected properly as in Figure 15. This not only made for
cleaner and easier to follow block diagrams, but also more reliable connections since the
individual ports in the interfaces were automatically connected based on assigned purpose,
so we couldn’t accidentally misconnect them.

Figure 14: Bundled block interface ports

26

Figure 15: Unbundled block interface ports

6.3 Neural Network Weights

Keep a small parameter bit width

The bit width of the parameters greatly affects the computation and memory resources
required in a neural network inference. Aside from simply the cost of storing the param-
eters in memory, the parameter bit-width affects the width of the elements that are used
for computations at later stages in the network. For example, in our network with a 784-
by-1-by-4-bit input layer, with 64-bit weights, the first layer of the network requires 4-bit
times 64-bit multiplications. The output of this layer is the sum of 784 4-bit times 64-bit
multiplications. Since 784 can be represented in a 10-bit value, this means that the output
of the first layer must have a with of at least 64+4+10 bits to ensure no overflow. Table 5
shows the memory requirements at each stage of a forward-pass for our three-layer neural
network, assuming w-width parameters.

Input Layer 1 Layer 2 Output

Size of Array 784× 1 10× 10 10× 10 10× 1
Required Bit Width 4 w + 4 + 10 w + 4 + 10 + 4 w + 4 + 10 + 4 + 4

Table 5: Neural net memory requirements

We found that using 64-bit or even 32-bit numbers to represent our network’s parameters
(weight and bias arrays) was prohibitively DSP-block intensive. The Nexys-DDR board
only has 420 DSP blocks, each having a maximum input bit width of 28-bits. To achieve
good parallelism, we needed to keep each multiplication in the input layer isolated to only
one DSP block. To accomplish this we chose to represent parameters as 16-bit signed inte-
gers. This limits the range of allowable weights to -32,768 to +32,767.

27

Floats to Integers

We trained our neural network using a Python package that has functions to help with
back-propagation based gradient descent. Most Python packages for training neural net-
works use parameters represented as floating point numbers, however multiplications and
additions are much more easily done in hardware with signed integers. For this reason we
cast our floating point weights to integers. Essentially, this ”throws away” the information
after the decimal point, so this technique only works if the weights are on a scale such that
the information after the decimal point is not important.

We have now specified two constraints on our network parameters:

1. The parameters must be between -32,768 to +32,767 to fit in a 16-bit signed integer

2. The parameters must be coarsely spaced so that casting floats to integers does not
result in a loss of accuracy

There are two tricks we discovered that can help with this:

Scale the training database Generally, making the training data more coarsely spaced
by scaling by a factor greater than one will result in more coarsely spaced parame-
ters. This can help with casting the parameters to integers.

Scale the parameters Since our entire network is linear, except for the RELU activation
function which is close to being linear, scaling all the parameters by a constant fac-
tor does not affect the classification output. This can help bounding the weights to
fit in a 16-bit signed integer.

28

References

[1] Westonb, “Westonb/ov7670-verilog: Verilog modules required to get the ov7670 camera
working.” [Online]. Available: https://github.com/westonb/OV7670-Verilog

[2] “Sobel filtering for image edge detection.” [Online]. Available: https://onlinedocs.
microchip.com/pr/GUID-37AD5EEE-6FAB-48FC-89F6-CAA649534B2A-en-US-1/
index.html

[3] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010. [Online].
Available: http://yann.lecun.com/exdb/mnist/

[4] B. V. Dan Gisselquist, “Wb2axip: Wishbone to axi ip,” Available at https://github.
com/ZipCPU/wb2axip.

29

https://github.com/westonb/OV7670-Verilog
https://onlinedocs.microchip.com/pr/GUID-37AD5EEE-6FAB-48FC-89F6-CAA649534B2A-en-US-1/index.html
https://onlinedocs.microchip.com/pr/GUID-37AD5EEE-6FAB-48FC-89F6-CAA649534B2A-en-US-1/index.html
https://onlinedocs.microchip.com/pr/GUID-37AD5EEE-6FAB-48FC-89F6-CAA649534B2A-en-US-1/index.html
http://yann.lecun.com/exdb/mnist/
https://github.com/ZipCPU/wb2axip
https://github.com/ZipCPU/wb2axip

	Project Overview
	Outcome
	Schedule
	Description of Blocks
	Camera interface
	Camera Configuration
	Camera Configuration ROM
	SCCB

	Edge Detection
	DeNoise
	Image Compression
	Neural Network
	Threshold Control
	VGA Overview
	VGA Driver (Stream to VGA)
	Pixel to Stream
	Memory IP Blocks
	DataMover Controller

	Design Tree
	Tips and Tricks
	Using the DataMover IP
	Using Standard Interfaces
	Neural Network Weights

