
1 2 3 4 5

1 2 3 4 5

A

B

C

D

A

B

C

D

Date: 2022-01-20 Rev: 5
Size: USLetter Sheet: 1/1

Title: Sensorless BLDC ESC V5
Savo Bajic

Same as V4 but with different MOSFET driver and status LED
Controlled primarily by I2C but can run with PWM
Designed for 10 to 20V input, current up to 100A
ATtiny1617 based BEMF ESC for BLDC

KiCad E.D.A. kicad 6.0.1-79c1e3a40b~116~ubuntu21.04.1

1234
5 6 7 8

RN5
10k

+BATT

+BATT

GND

1

2

3

Q6

+BATT

D3

1

2

3

Q3

+BATT

1

2

3

Q2

+BATT

1

2

3

Q1

GND

12
JP5

GND

C6

1n

C9
0u1D

4

1
2
3
4
5
6

J3
SERIAL/PWM

R
1

10
k

+5V

1

2

3

Q5

C4
1u

C3
1u

D1

C5
1u

1
2
3
4 5

6
7
8

RN1
20

1

2

3

Q4

GND

HIN11

LO1 10

V
C

C
11

VS3 12
HO3 13
VB3 14

VS2 15
HO2 16
VB2 17

VS1 18
HO1 19

HIN22

VB1 20

HIN33

LIN14

LIN25

LIN36

C
O

M
7

LO3 8

LO2 9

U1

IRS2334S

+BATT

12
JP1

GND

GND

1
2
3
45

6
7
8

RN2
20

1
2
3
4 5

6
7
8

RN4
33k

C8

1n

GND

GND

+BATT

D2

GND

D5

STATUS

R2

330

+5V

GND

GND

GND

GND

PA2 1

PB6 10
PB5 11
PB4 12
PB3 13
PB2 14
PB1 15
PB0 16PC017

PC118

PC219

PA3 2

PC320

PC421

PC522

~{RESET}/PA023

PA1 24

G
N

D
3

V
C

C
4

PA4 5

PA5 6

PA6 7

PA7 8

PB7 9

U2
ATtiny1617-M

1 2
JP3

1
2
3

J2
UPDI

C
1

0u
1

+5V +5V

+5V

C2
4n7

+5V

1
2
3
4

J1
I2C

GND

1 2
JP4

GND
C7

1n

1
2
3
4 5

6
7
8

RN3
33k

GND

1 2
JP2

G
N

D

B_{OUT}

B_{OUT}

A_{OUT}

B_{OUT}A_{OUT}

A_{OUT}

C_{OUT}

C_{OUT}

C_{OUT}

A_{HO}

REVERSE

PWM_{2}

PWM_{IN}

PWM_{5}

PWM_{0}

BEMF_{A}

PWM_{1}

PWM_{4}

PWM_{3}

RESET

C_{LO}

SCL

C_{HO}

SDA

BEMF_{B}

PWM_{5}

PWM_{4}

SDA

RESET

DTR

PWM_{IN}

TX
RX

RESET

RX

PWM_{2}

TX

BEMF_{C}

PWM_{1}
PWM_{0}

LED LED
BEMF_{ZERO}

PWM_{3}
ADD_{3}
ADD_{2}

SCL

ADD_{1}

B_{HO}

B_{LO}

A_{LO}

C_{LO}

A_{LO}
B_{HO}

A_{LOF}

B_{LOF}
B_{HOF}

A_{HOF}

C_{HOF}

B_{LO}

C_{HO}

A_{HO}

B
E

M
F

_{
C

}

C_{LOF}

B
E

M
F

_{
B

}
B

E
M

F
_{

A
}

BEMF_{ZERO}

BEMF Dividers

Programming Headers

Back ElectroMotive Force (BEMF) is generated by a rapidly spinning motor. We monitor this on the floating phase
to determine when it is the right time to commute the motor to the next step.

The resistor network is used to divide the voltage down to a safe level (<5V) and derive a virtual zero by averaging
the voltage from each phase. These resistor networks need tight tolerances so the division ratios are as identical
as possible. Capacitors are there to help smooth out the signal, but are entirely optional.

Short these to ground to set
address of device on the I2C.
Addresses start at 0x20 and
go up to 0x27 (all shorted).

The MCU is programmed by default using UPDI, but a bootloader can be
programmed so that it can be programmed like other Arduinos using UART.

There are connectors for both of these.

Motor Control Therory

PC5 is unavailable
on some variants

The basic therory for controlling a 3-phase BLDC motor is that when two
phases are connected to high and low, then the third floats [between them].

Let's say phase A is connected high, B is low, and C is left floating (not
connected to either power level) - but was previously high.

The floating voltage starts close the previous extreme it was connected to,
(high for C) then as the motor rotates through the step it will be pulled
toward the other extreme in a roughly linear fashion.

When this floating voltage crosses the average of all three phases ("zero"),
we are halfway through a commutation step, so we wait an equivalent
amount of time from the previous commutation to the zero crossing before
going to the next step. This is all handled by the MCU and its peripherals.

MAX TOL:
20V
100A

A MOSFET driver is used to drive the half-bridges for each phase of the motor based on control signals from the MCU.

N-channel MOSFETs are used on both sides of the bridge due to their lower "on" resistance. To drive the high-side FETs requires
"bootstrapping" to get a gate voltage higher than the drain (VBAT) for optimal performance.

Although the MOSFETs are rated for >100A, the traces are not! Add solder to increase current capacity

Motor Control

Control Connectors

Microcontroller (MCU)

Either I2C or PWM can be used to control this ESC.
I2C can act as both input and output for digital data.

PWM is standard for commercial ESCs. 1 to 2ms duty,
20ms period. PWM input is on the UART programming header.

Short reverse pin to GND
reverse motor direction.

Responsible for controlling the entire system.
Recieves input and adjusts the motor speed accordingly.
Can also output current motor performance using digital communication.

Internal comparator is used for BEMF "zero"-cross detection.
A timer is used to create a time delayed event from the cross event
based on the time recorded between the cross and previous commutation.

Has an LED to provide feedback to the user.

