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1.0 Problem Definition and Design Requirements 
The objectives and requirements for this portion of the project are outlined in the Contest 1 
Manual [1]. The primary goal of this contest is to develop an exploration algorithm that allows a 
robot to autonomously navigate an unknown environment within a certain time limit. Due to the 
Covid-19 pandemic, this project is completed only using software, as it would typically involve a 
physical robot navigating a real environment.  
 
The robot is simulated using TurtleBot and it will navigate an environment created in gazebo. 
While traversing the area, the robot will use the ROS gmapping package to dynamically create a 
map from information provided by sensors on the TurtleBot, including a Kinect sensor and front 
bumper sensors. Figure 1 shows an example of a map generated in a practice environment by a 
robot that was controlled by a person via teleops. The white area is open space while the grey 
areas are the obstacles or walls. Although created by a person, this map provides an idea for what 
the exploration algorithm should aim to achieve. Figure 2 shows a rudimentary example of a map 
generated by the exploration algorithm in the same practice environment as Figure 1 (and within 
the time limit). The team will be scored based on the percentage of the total environment mapped 
in addition to detecting and mapping key obstacles within the time limit.  

 

     
          Figure 1: Example of a map generated by           Figure 2: Example of a map generated by 
                         a human-operated robot                                       the exploration algorithm 
 
The concepts required for this project can be applied to many other industries that use and rely 
on robots to execute tasks. For example, a similar scenario is presented for search and rescue 
robots used after natural disasters, as they must navigate unknown and hazardous terrain to 
search for missing or injured people. Other, less extreme, examples include robots used in the 
service and medical industries to assist, help, and treat humans, such as by escorting people to 
certain locations or navigating environments to drop off items/packages.  

1 



1.1 Requirements and Constraints 
For this contest, there are some design requirements that the team must take into account when 
developing the navigation algorithm for the robot. These requirements can be found in the 
Contest 1 Manual [1] and are also presented below. It is noted that some of the design 
requirements are due to the limitations of the robot and its sensors in the simulation.  
 

1. The robot must explore and map the environment within a maximum time limit of 15 
minutes.  

2. The robot must stop moving when the 15 minutes are completed or it has finished 
exploring and mapping the environment.  

3. The robot must autonomously navigate the environment (i.e., no human intervention will 
be provided).  

a. It is noted that human intervention is required to set up the simulation 
environment, launch gmapping, and run the code. These tasks are not included in 
the above statement.  

4. The robot must use sensory feedback provided by TurtleBot to navigate.  
a. Fixed sequence movements cannot be generated without the help of sensors.  

5. The robot must not move faster than*: 
a. 0.25 m/s when navigating the environment (linear speed) 
b. 0.1 m/s when near obstacles (linear speed) 
c. π/6 rad/s when rotating (angular speed) 

6. The robot cannot use code, algorithms, or libraries that directly implement a key portion 
of the algorithm.  

7. The contest environment will be a three-dimensional simulated environment with static 
obstacles contained in a 6x6 m2 area.  

a. It is noted that the red brick wall cannot be sensed by the robot.  
8. The layout of the contest environment is not known to the team.  
9. There are two trials per team, with the best trial counting towards the final score.  

 
*Note: A speed limit is set in order to reduce errors in mapping.  
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2.0 Methods and Strategy 

Given the uncertainty in environmental layout for the contest, and the limited development time, 
the team chose to implement a modular, behaviour-based design. The reasoning behind this 
approach was that regardless of the exploration strategy used, the behaviours required to achieve 
the contest requirements would be similar. For example, regardless of the exploration method, 
the robot must be able to scan its environment, and retreat from obstacles when a bumper is 
pressed. These behaviours could be implemented as their own modules and functions, which 
could be combined with a high-level control architecture. This gave the team flexibility in 
designing the high-level exploration strategy for the robot. 
 
Initially, the team was aiming to implement a frontier-based approach to exploration. Due to time 
constraints and unfamiliarity with elements of gmapping and the ROS localization suite, the team 
instead opted to use a weighted random walk method for exploration, utilising a reward function 
fed by the turtlebot’s depth camera to help guide the robot towards open spaces. Compared to the 
initial approach, this method was easier to implement, which was important given the limited 
development timeframe. Compared to a true random walk, the weighted walk guides the robot to 
travel further and faster, exposing it to more of its environment, which was important given the 
time requirements for the contest.  

3.0 Detailed Robot Design and Implementation 
3.1 Sensory Design  
The simulated Turtlebot platform is equipped with a variety of sensors to aid in navigation, 
including touch bumpers, a depth camera, cliff sensors, and odometry data. Given that the 
environment the robot is exploring in Contest 1 is flat and enclosed, cliff sensors do not produce 
much useful information; there are no edges or changes in elevation for the robot to detect. The 
touch sensors, camera, and odometry were therefore used extensively to aid in exploration. 

3.1.1 Bumpers 
The Turtlebot has a set of three bumpers located on the front, left, and right sides. These bumpers 
publish their state (1 when pressed, 0 otherwise), which in turn is fed to the robot’s high level 
control architecture. The primary motivation for using bumpers was to aid the robot in obstacle 
avoidance. The environment contains some obstacles that are invisible to the depth camera; for 
example because they are too low to be detected in the camera’s field of view. The bumpers 
allow for these obstacles to be detected upon collision. During development, the team also 
identified issues with the depth camera failing to detect objects closer than 45 cm to the robot.  
 
The bumpers facilitated the addition of local obstacle avoidance during traversal, when the 
camera could not detect obstacles in the motion path. Specifically, a set of obstacle avoidance 
behaviours were created with the bumper states as a sensory input. These behaviours take 
precedence over all other traversal behaviours in the robots control architecture. When a bumper 
is pressed, the bumper callback function records which bumper was triggered, and updates a 
global state variable. At the beginning of a control loop iteration, the value of each callback 
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function is evaluated, and the robot state is checked. If the robot is in the ‘bumper state,’ the 
bumperMove function is called. This function receives an index denoting the most recently 
triggered bumper, and executes a reverse movement, followed by a rotation. The direction and 
magnitude of rotation is dependent on which bumper detected a hit. After executing an evasive 
action, the robot returns to an explore state, and proceeds accordingly. A consequence of using 
the bumper for obstacle avoidance is that the bumper hit can be used for mapping. The gmapping 
package adds bumper contact to the map by default, which improves the fidelity of the map in 
situations where obstacles are not detected by the camera.  

3.1.2 Depth Camera 
The Turtlebot is equipped with a Microsoft Kinect camera system, which integrates both an RGB 
and depth camera. The depth camera can be used to approximate the functionality of a laser 
scanner, which generates a distance at each point in a one-dimensional array from the depth 
camera input. The motivation for using the depth camera in this way was to detect obstacles at 
longer ranges, while simultaneously building a map of the environment. Compared to the 
bumpers, the camera sees more of the environment, and does not require contact with an 
obstacle. It therefore made sense to use the camera as the primary method for exploring the 
environment and making movement decisions.  
 
The camera was integrated as a laser scanner through the laserCallback function. During a 
function call, a desired field of view is divided into a series of discrete points. The range value is 
evaluated at each point, and an average and minimum distance is computed from the set of 
points. At the beginning of a loop iteration, the minimum distance passed by laserCallback is 
stored, and used to set maximum step sizes for movements. In the robot’s scan state, an array is 
used to store a minimum distance for each of a discrete set of orientations, which is then passed 
to the control logic governing exploration to generate a weighted set of scores for movement in 
various directions. This helps the robot decide which direction to move in, with a preference for 
open spaces, meeting the requirements for autonomous exploration and decision making. 

3.1.3 Odometry 
Encoders on the motors of the turtlebot provide information on the rotational velocity of each 
wheel, which is used with the forward differential kinematics model to produce linear and 
rotational velocities. Integrating these velocities over time produces an estimate of the robot’s 
position and heading; this is the odometry data supplied by the odomCallback function.  
 
Odometry data was used to close the control loop with respect to movement. Inputting 
movement commands with motor velocities and durations alone is an example of open-loop 
control. The robot does not track how far it has actually travelled, nor can it easily estimate its 
position in the world frame. By checking the odometry data at the beginning of each loop 
iteration, the turtlebot can adjust itself to reach the desired destination. A consequence of this is 
that the main control loop can be iterated repeatedly during movement commands by comparing 
the odometry callback to the desired output of the movement command, and setting a 
doneMoving state accordingly. This allows for more frequent updates from all of the sensors 
(given that the values of the callback functions are evaluated only at the beginning of each 
control loop iteration). 
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3.2 Controller Design 
The overarching control architecture used for the first contest was a behaviour-based controller, 
implemented using a finite state machine. Combinations of a set of behaviours were encoded in 
various states (“scan”, “explore”, etc.), with transitions between states triggered by sensory input 
and the code of other states. The robot can only exist in a single state at a given time, but this 
state may encompass multiple sub-behaviours called substates within the team’s code. It is 
important to note that by having functions that are repeatedly called instead of taking control 
within them, this allows for more fluid transitions between the behaviour states, notably if a 
bumper is struck.  
 
The main behaviour states are: Bumper, Explore (the main/default state), and Scanning. The 
Bumper State, detailed in Section 3.2.4, handles the bumper “interrupts”. This means that when 
this state is achieved, a bumper has been pressed on the robot. The program adjusts the robot to 
avoid or move away from the obstacle it impacted in order to release the bumper and allow it to 
either explore or scan the surroundings. The Explore State is the main state the robot takes while 
navigating the environment. In this state, the robot traverses the world randomly, while primarily 
sticking to straight lines until obstacles are encountered. Occasionally, the robot will conduct a 
scan to map out features of the environment as it explores. The third state is the Scanning State, 
which performs a complete rotation and records the minimum distance at regular intervals using 
the laser scan sensor. Once the scan is complete, the program aligns the robot with a heading 
based on a weighted decision that favours directions with larger distances from any obstacles, 
before handing control back to the explore code. The details of the code used in the algorithm is 
explained in the sections below.  

3.2.1 Contest 1 Main Code 
The main code for the robot. It initializes the ROS systems the robot depends on, such as 
subscribing to different sensor data streams and configuring the control loop. Before entering the 
control loop to execute the robot’s behaviour. 
 
The main control loop begins by processing all the ROS callbacks to acquire the most recent set 
of sensor data. It then calls on the different behaviours depending on the state (state) it is 
currently in and keeps track of their sub states (subState). If the state is ever changed the robot 
resets the sub state to zero to properly initialize the newly selected state. These behaviours 
merely configure the robot’s motion or future state, but never actually do any publishing within 
themselves so they must be repeatedly called to complete their task. This is intentional so the 
callbacks can be properly processed by the system with every loop iteration. 
 
For example, if the explore state had its own internal loop for updating ROS callbacks and 
publishing the motion it needs, the team may forget to include code to handle a bumper event in 
that function and thus have undesired behaviour from the robot overall. 
 
It finishes each loop cycle by publishing the current motion to the robot to perform it, and 
keeping track of the time elapsed so the robot stops at 15 minutes. 
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3.2.2 Globals Header 
This header is used to simplify the production of other code files by including all the common 
libraries and global constants and variables that may be needed in code in one file, so the other 
files only have to include “global.h” and they will have access to them all. 
 
All global variables are declared here using the extern prefix (e.g. linear) to signify in files that 
include the global header, that they are declared as global in another .cpp file more specific to 
that variable (i.e. movement.cpp). Most global constants, such as EXPLORE_STATE, are 
declared directly in the file, since they are used in multiple places in multiple files. 
 
Other than libraries and global constants and variables, there are also two #define statements to 
create the DEG2RAD and RAD2DEG “functions” in code across the system. 

3.2.3 Movement Code 
The robot’s movement is controlled using velocities, so achieving controlled displacements (e.g. 
moving 0.87m forwards) needs to be implemented in software, this is the primary purpose of the 
movement library, ultimately simplifying the control of the robot for other functions.  
 
All movement done by the robot is handled by these functions. The process is the same for any 
motion, first the velocities and displacements (angular and linear) desired must be set using the 
setMotion, then the motion is maintained by calling monitorMotion until it is complete. Motion is 
maintained by ensuring that the velocities are kept at the specified levels, and checking that the 
robot’s displacement requirements have been met using the robot’s odometry. Once either linear 
or angular displacement requirements have been met, the velocity of that axis of motion is set to 
zero to prevent further overshoot. Once both displacements have been met, the motion is 
determined to be completed and a value of true is returned by monitorMotion (it returns false if 
the motion is still on-going). 
 
Using odometry is helpful to the team because it ensures that the robot has truly performed the 
desired displacement in comparison to a time-based system that predicts when the motion should 
be completed. Odometry is handled by the callback odomCallback which updates the robot’s 
estimated position (posX, posY) and orientation (yaw) in the world. 
 
To further simplify the coding for motion for the team, two other functions were designed for 
motion, travel and setHeading. The function travel takes in the desired displacement and 
velocities and handles calling setMotion and monitorMotion within itself which simplifies code 
elsewhere. It achieves this by monitoring the input parameters and comparing them to the 
previous ones passed in. Should it be called with new parameters it will know that a new motion 
is requested and set it up using setMotion otherwise it will call monitorMotion and pass the status 
of the motion (complete or not) back to where it was called. 
 
The setHeading function is used to align the robot with a desired heading (yaw) value. It works 
similarly to travel by monitoring the parameters passed into it for changes to see if new motion is 
desired or it needs to simply monitor the motion. It however, contains code to determine the 
shortest way to align the robot with the desired heading based on its current heading as part of its 
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set up code after new parameters have been detected, before calling travel to begin this motion. 
When sustaining motion it just calls travel with the parameter determined when setting up the 
alignment. It returns the value returned to it by travel allowing the user to know when alignment 
to the new heading is complete. 

3.2.4 Bumper Code 
The bumper header (see Appendix B), and thus the bumper code, includes the globals and 
movement headers, as it only relies on some global variables and the functions stored in 
movement in order to move the robot once a bumper registers that it has been struck/hit by an 
obstacle. The callback functions are called with each iteration of the while loop in the main code 
via the ros::SpinOnce() command. This means that the code is constantly checking to see if any 
new data has been published by the bumpers to indicate that one of the three bumpers has been 
struck while the robot was either exploring or scanning. Thus, the bumper code acts as an 
interrupt to shift the program away from what it was currently doing to react to the hit quickly 
and efficiently.  
 
The operation of the bumper code (and, by extension, the portion of the main code that calls the 
bumperMove function) is outlined below. See Appendix A and C to view the main code and the 
bumper code. As mentioned previously, the main code checks the bumperCallback function to 
determine if any of the three bumpers have been pressed. If not, the robot will continue to either 
explore (see Section 3.2.6 Exploration Code) or scan (see Section 3.2.7 Scanning Code). If it is 
determined that a bumper has been pressed, the bumperCallback function executes to check 
which bumper was last pressed (in the event multiple ones were pressed due to the nature of the 
collision) with the use of the bumperName function and then outputs this information to the user 
(i.e., “Right bumper impact detected.”).  
 
The program then sets the state to BUMPER_STATE to handle the motion to move the robot 
away from the obstacle. This results in the main code calling the bumperMove function to 
execute the movement commands. Once called, this function moves the robot backwards 0.1 m 
at a rate of 0.25 m/s, so that it is no longer in contact with the obstacle. It then rotates a certain 
direction according to which bumper was struck: 

● If the left bumper was struck, the robot rotates π/4 rad clockwise at a rate of π/6 rad/s. 
● If the centre bumper was struck, the robot rotates π/2 rad counterclockwise at a rate of π/6 

rad/s.  
● If the right bumper was struck, the robot rotates π/4 rad counterclockwise at a rate of π/6 

rad/s.  
 
Once the movement is complete, the state of the robot is set to EXPLORE_STATE to move the 
program into the explore code. Lastly, the bumper code outputs to the user that the bumper 
correction has been completed.  
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3.2.5 Laser Code 
The laser header only includes the globals header for global variables and one function used for 
laser callback. The laser code only handles reading data that is published by the laser scanner 
sensor on the robot. With each iteration of the while loop in the main code, the callback function 
for the laser scanner is called, although it is not used in the main code. Instead, the code is used 
extensively in the exploring and scanning codes to help navigate and map the surroundings.  
 
The laserCallback function first reads in data published from the laser scanner sensor and 
determines the number of laser beams available. It then narrows down the selection of values to a 
desired range around the centre, which is determined by a desired angle set by the user prior to 
running the code. The size of the laser scan array (number of laser beams available), the size of 
the offset (number of lasers stored given the desired range), and the width of the laser scan array 
are output to the user.  
 
Next, the function finds the minimum distance value in the narrowed range as well as taking the 
average to the valid distances. If the scanner cannot make an accurate measurement due to the 
limitations of the sensor in the simulator (i.e., it enters a “dead zone”), a distance of infinity is 
returned. Through testing, the lowest valid measurement observed was approximately 0.45 m. 
Due to this issue, if the minimum value is infinity or less than 0.46 m, the program sets it to zero 
so the rover treats it as a contact. Therefore, in the exploration code, when the robot approaches 
an obstacle, if the minimum distance is calculated to be less than 0.46 m or infinity, the robot 
will stop and rotate either clockwise or counterclockwise away from the obstacle and continue to 
move forward and explore.  
 
One issue the team noticed was that the laser scanning sensor seemed to be unreliable during 
testing of the code. In essence, the robot would move forward and begin to approach a 
wall/obstacle head on, meaning the object could be picked up by the laser scanner. It then 
proceeded to move forward into the object, resulting in a collision. Other instances, the laser 
scanner performed as expected and helped navigate a robot out of a space without any collisions. 
Moving forward, the team will look to implement more robust code to deal with this issue.  
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3.2.6  Exploration Code 
This code is responsible for the robot’s exploration behaviour, and is run for the majority of the 
robot’s run. It moves the robot forward and then randomly decides whether to randomly pick a 
direction or conduct a scan. 
 
The first step is to determine the available distance in front of the robot for motion, which is 
done using the laser scanner data, minLaserDist, and subtracting a set clearance the team wants 
the robot to maintain from any given obstacle before it. For example, if the minLaserDist is 
0.9m, and the desired clearance is 0.1m, the clearance to move is 0.8m. This is compared to the 
team’s maximum step (0.75m) whichever is the limiting value (in this example 0.75m) is 
selected. The robot then moves to the next substate responsible for moving forward this desired 
amount. 
 
Once the forward motion has been completed the robot advances to the next substep of 
exploration, deciding what to do next. This is done by randomly deciding a number between zero 
and 100. If this number is smaller than our scanning threshold (scanChance, 30) then the robot’s 
state is set to scanning. Otherwise the robot will randomly select a direction. This threshold 
between scanning and randomly turning was empirically chosen by the team after it was 
observed to provide a reasonable balance between speed, good mapping,  
 
If the robot decides to head in a random direction, it first checks the presence of obstacles in 
front of it using the laser scanner data once again. If obstacles are present the rover sets the angle 
generator (centeredAngle) to turn to start past zero (minDeflection, 50 degrees) so it turns left or 
right. The maximum angle from the angle generator will always be maxDeflection, currently 135 
degrees. The angle generator generates a value between the minimum and maximum value 
passed in, but will favour values closer to the lower end. This is so the robot generally takes 
random steps that would keep it going relatively forward so it does not waste time backtracking. 
 
The robot then turns itself to this new angle and checks for obstacles present, using the laser 
scanner. If there is something present, the robot will turn to the other side by doubling the turn 
magnitude and switching the direction before continuing. 
 
With that done, the code restarts the exploration state by setting its sub state to be zero. 
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3.2.7 Scanning Code 
This code is responsible for handling the robot’s occasional rotating scans of its environment. It 
has the robot spin a full rotation made up of several steps. At each step in the rotation the laser 
scanner readings are recorded as well as the robot’s current absolute heading (yaw).  
 
Once the robot completes its rotation it will go through all these recordings and select one 
randomly, weighed by the distance available to travel for each step, so it seeks open areas. This 
weighted direction is calculated by determining the sum of all distances found during the scan, 
picking a number between zero and this total, and seeing going around through the steps to see 
which value “buckets” this value.  
 
For example if the robot scans north (1.5m), west (1.5m), south(2.0m), then east (1.0m) the total 
will be 6.0m. The robot will pick a number between 0 and 6.0, e.g. 3.5m. The rover will then go 
through the step until the accumulated distance exceeds this number, which will be south (1.5 + 
1.5 + 2.0 = 5.0m). This is shown in Table 1. 
 
Table 1: Weighted direction example 

 
A weighted random decision is used over an absolute maximum to avoid the robot getting stuck 
in a loop if the geometry of the obstacles around it generate a condition that would trap such 
behaviour. For example if the robot was travelling down a long corridor it would cycle between 
the two ends with no chance of escaping. 
 
The final step in the scanning code is to have the robot align itself with the selected heading 
using the movement functions. Once aligned it switches the state back to exploration. 
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Step Name Distance Accumulated Distance 

1 North 1.5m 1.5m 

2 West 1.5m 3.0m 

3 South 2.0m 5.0m 

4 East 1.0m 6.0m 



4.0 Future Recommendations 

One item the team wished they had time to implement was extracting data from the map created 
by the ROS gmapping package. This would help inform decisions on where the robot should 
move next (frontier-based exploration). Currently, the robot experiences issues by becoming 
“trapped” in certain areas of the environment due to the layout of the practice world (i.e., areas 
that are heavily enclosed and only have one square of space to exit). Since the approach to the 
movement is a weighted random walk, the robot will not actively move towards empty locations 
in the map to actually “explore” those locations.  
 
Implementing a frontier-based exploration requires a more developed localization strategy (e.g., 
implementing some form of Monte Carlo localization) and a deeper understanding of the 
gmapping package. Combining the localization of the robot with the occupancy grid map created 
by the gmapping world would allow the team to develop a cost/reward function for points on the 
robot’s frontier. It would then generate a path to the desired location using a pathfinding 
algorithm (e.g., A*). This would allow for a more focused exploration strategy than the weighted 
random walk the team used for contest 1.  
 
Another major item the team would approach differently if more time was granted would be to 
tweak the parameters of the code, such as desired laser range or step size used to explore, and 
observe their influence on the robot’s performance. This would allow the team to see what sets 
of parameters best handle different types of maps (e.g., open vs closed), as well as the quality of 
maps generated. In addition, this would allow for more in-depth troubleshooting of common 
issues, such as getting stuck in certain obstacle configurations.  
 
Lastly, due to the issue with the laser scanner (mentioned previously in the laser code section), 
the team would have liked more time to properly assess the issues of the scanner and determine a 
robust algorithm to deal with them. During simulation, the scanner seemed to provide unreliable 
readings. At times, the robot would sense obstacles (even ones close up) and maneuver around 
them; however, in other instances, the robot collided with obstacles head on, even when it had 
adequate time and space to sense the obstacle and avoid it. Moving forward, the team will 
continue to test the laser scanning sensor to determine how best to code for these issues, or to 
determine the root of the issues and attempt to fix them if possible.  
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5.0 Contribution Table 
Contributions noted by value: 1 - small amount, 3 - majority, blank for none.  
 
Table 2: Contribution Table 
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Section Savo Bajic Maximilian Glidden Catherine Kucaba 

1.0   3 

2.0 1 3  

3.1 1 3  

3.2 3 1 2 

4.0 1 3 2 

Robot Code 3 1 2 



6.0 Appendices 

Appendix A : contest1.cpp Code 
#include "globals.h" 
#include "bumper.h" 
#include "laser.h" 
#include "movement.h" 
#include "scanning.h" 
#include "explore.h" 
 

/* State of robot 

 0 - Initialization / start 

 1 - Exploring 

 2 - Bumper collision event 

*/ 

u_int8_t state = SCAN_STATE; 
 

int main(int argc, char **argv) 
{ 

   ros::init(argc, argv, "image_listener"); 
   ros::NodeHandle nh; 
 

   ros::Subscriber bumper_sub = nh.subscribe("mobile_base/events/bumper", 
10, &bumperCallback); 
   ros::Subscriber laser_sub = nh.subscribe("scan", 10, &laserCallback); 
   ros::Subscriber odom = nh.subscribe("odom", 1, &odomCallback); 
   ros::Publisher vel_pub = 
nh.advertise<geometry_msgs::Twist>("cmd_vel_mux/input/teleop", 1); 
 

   ros::Rate loop_rate(10); 
 

   geometry_msgs::Twist vel; 
 

   // contest count down timer 

   std::chrono::time_point<std::chrono::system_clock> start; 
   start = std::chrono::system_clock::now(); 
   uint64_t secondsElapsed = 0; 
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   u_int8_t lastState = 0;         // Used to check if state was changed 
between loop iterations by the most recent callbacks 

   u_int8_t subState = 0;          // Used for states within states 
   u_int32_t iterationCount = 0;   // Used to keep track of iterations for 
timed events like distance traversal 

 

   // Process the callbacks once before entering the loop to kick things 

off. 

   ros::spinOnce(); 
   loop_rate.sleep(); 
 

   ROS_INFO("STARTING MAIN LOOP"); 
  

   while(ros::ok() && secondsElapsed <= 900) { 
       ros::spinOnce(); // Check callback functions 
       iterationCount++; 
       bool doneMoving = false; 
 

       ROS_DEBUG("Postion: (%f, %f) Orientation: %f degrees Range: %f", 
posX, posY, RAD2DEG(yaw), minLaserDist); 
  

       // Check if state is the same as the last loop 

       if (lastState != state) { 
           lastState = state; 
           subState = 0; 
           iterationCount = 0; 
       } 

  

       /////////////////////////////////////////// 

       // Behaviour states 

       // All in one 'if' block so only one is exectuted per loop cycle, 

even when a change occurs 

 

       if (state == BUMPER_STATE) { 
           bumperMove(subState); 
       } 

       else if (state == EXPLORE_STATE) { 
           explore(subState); 
       } 

       else if (state == SCAN_STATE) { 
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           scanAroundSpot(subState); 
       } 

 

       vel.angular.z = angular; 
       vel.linear.x = linear; 
       vel_pub.publish(vel); 
       ROS_DEBUG("Current speeds linear: %.2f m/s angular: %.3f deg/s", 
linear, RAD2DEG(angular)); 
  

       // The last thing to do is to update the timer. 

       secondsElapsed = 
std::chrono::duration_cast<std::chrono::seconds>(std::chrono::system_clock
::now()-start).count(); 
       loop_rate.sleep(); 
   } 

 

   return 0; 
} 
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Appendix B : bumper.h Code 
 
#ifndef BUMPER_HEADER 
#define BUMPER_HEADER 
 

#include "globals.h" 
#include "movement.h" 
 

 

void bumperCallback(const kobuki_msgs::BumperEvent::ConstPtr& msg); // 
Handles bumber events 

void bumperName(u_int8_t index, char output[]); // Used to write which 
side got hit given the index 

void bumperMove(u_int8_t &subState); 
 

#endif 

 
Appendix C : bumper.cpp Code 
#include "bumper.h" 
 

// Bumper global variables 

uint8_t bumper[3] = {kobuki_msgs::BumperEvent::RELEASED, 
kobuki_msgs::BumperEvent::RELEASED, kobuki_msgs::BumperEvent::RELEASED}; 
bool anyBumperPressed = false;  // Stores overall bumper status 
uint8_t lastBumper = 0;         // Stores last bumper pressed 
 

// Retreat constants 

const float BUMPER_RETREAT_SPEED = FAST_MOVE;       // Linear retreat 
speed m/s (must be positive) 

const float BUMPER_RETREAT_DIST = 0.1;              // Linear retreat 
distance 

const float BUMPER_RETREAT_ROT = M_PI / 4;          // Angle to twist if a 
side bumper is struck (rad) 

const float BUMPER_RETREAT_ROT_VEL = FAST_SPIN;     // Twist rate (rad/s) 
 

void bumperCallback(const kobuki_msgs::BumperEvent::ConstPtr& msg) 
{ 

   // Access using bumper[kobuki_msgs::BumperEvent::{}] LEFT, CENTER, or 

RIGHT 

   bumper[msg->bumper] = msg->state; 
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   // Inform user if a bumper is released 

   if (msg->state == kobuki_msgs::BumperEvent::RELEASED) { 
       char sideName[10]; 
       bumperName(msg->bumper, sideName); 
       ROS_DEBUG("%s bumper (%d) released.", sideName, msg->bumper); 
   } 

  

   // Example of single bumper monitoring 

   // uint8_t leftState = bumper[kobuki_msgs::BumperEvent::LEFT]; 

   // kobuki_msgs::BumperEvent::PRESSED if bumper is pressed, 

kobuki_msgs::BumperEvent::RELEASED otherwise 

 

   // Record if any bumper is pressed and record that 

   anyBumperPressed = false; 
   for (u_int8_t i = 0; i < N_BUMPER; i++) { 
       if (bumper[i] == kobuki_msgs::BumperEvent::PRESSED) { 
           anyBumperPressed = true; 
  

           // Inform user that bumpers are in contact 

           char sideName[10]; 
           bumperName(i, sideName); // Writes which side got hit to 
sideName 

           ROS_WARN("%s bumper impact detected.", sideName); 
 

           state = BUMPER_STATE; // Set robot to bumper state in main loop 
           lastBumper = i; // Records which bumper was last struck 
       } 

   } 

} 

 

void bumperName(u_int8_t index, char sideName[]) 
{ 

switch (index) { 
   case 0: 
       strcpy(sideName, "Left"); 
       break; 
   case 1: 
       strcpy(sideName, "Center"); 
       break; 
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   case 2: 
       strcpy(sideName, "Right"); 
       break; 
} 

} 

 

void bumperMove(u_int8_t &subState) 
{ 

   bool doneMoving = false; 
 

   // Linear retreat from obstacle 

   if (subState == 0) { 
       doneMoving = travel(BUMPER_RETREAT_DIST, (-BUMPER_RETREAT_SPEED), 
0, 0); 
 

       if (doneMoving) { 
           subState++; 
           ROS_DEBUG("Done backing up from impact."); 
       } 

   } 

 

   // Set direction based on which bumper was last hit 

   if (subState == 1) { 
       // Set robot to spin according to last bumper hit (0 is leftmost 

bumper) 

       switch (lastBumper) { 
           case 0: 
               doneMoving = travel(0,0, BUMPER_RETREAT_ROT, 
(-BUMPER_RETREAT_ROT_VEL)); 
               break; 
           case 1: 
               doneMoving = travel(0, 0, M_PI / 2, 
BUMPER_RETREAT_ROT_VEL); 
               break; 
           case 2: 
               doneMoving = travel(0, 0, BUMPER_RETREAT_ROT, 
BUMPER_RETREAT_ROT_VEL); 
               break; 
       } 

   } 
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   // Wait until done spinning to resume operation 

   if (doneMoving) { 
       ROS_INFO("Bumper correction complete."); 
       state = EXPLORE_STATE; 
   } 

} 

 
Appendix D : explore.h Code 
#ifndef EXPLORE_HEADER 
#define EXPLORE_HEADER 
 

#include "globals.h" 
#include "movement.h" 
 

// Explore related functions 

void explore(u_int8_t &subState); 
float centeredAngle(float low, float high); 
#endif 

 
Appendix E : explore.cpp Code 
#include "explore.h" 
 

// Deflection allowance when randomly turning 

const uint8_t minDeflection = 50;   // Used when we can't go forward 
const uint8_t maxDeflection = 135; 
 

const uint8_t scanChance = 30; // Chance to scan (of 100) 
 

void explore(u_int8_t &subState) 
{  

   static float stepToTake, speedToExplore; 
   bool doneMoving = false; 
 

   // Bumble about 

   if (subState == 0) { 
       //Determine step to take 

       ROS_INFO("Minimum laser distance is %.2fm.", minLaserDist); 
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       stepToTake = std::max(0.0f, minLaserDist - WALL_CLEARANCE); //Used 
to avoid negative is already too close 

       stepToTake = std::min(EXPLORE_STEP, stepToTake); 
 

       // See if we'll stay out of the slow zone or not 

       if ((minLaserDist - stepToTake) < SLOW_DOWN_DIST) speedToExplore = 
SLOW_MOVE; 
       else speedToExplore = FAST_MOVE; 
 

       ROS_INFO("Exploring. Going forward %.2fm at a speed of %.2f m/s.", 
stepToTake, speedToExplore); 
       subState++; 
   } 

 

   // Do the bumbling about 

   if (subState == 1) { 
       doneMoving = travel(stepToTake, speedToExplore, 0, 0); 
 

       // If done bumbling about, randomly decide between a random turn or 

a scan 

       if (doneMoving == true) { 
           uint8_t diceRoll = rand() % 100; // "!rtd" at ctf_2fort 
 

           if (diceRoll < scanChance) state = SCAN_STATE; // Do a proper 
scan 

           else { 
               // Determine how much to spin, up to a set max to not go 

backwards 

               // If we're close to the wall, we want the spin to pass a 

minimum to go away 

               if (minLaserDist < (SLOW_DOWN_DIST / 2.0)) { 
                   stepToTake = DEG2RAD(centeredAngle(minDeflection, 
maxDeflection)); 
               } 

               else stepToTake = DEG2RAD(centeredAngle(0, maxDeflection)); 
 

               // 50/50 to going left or right 

               if ((rand() % 2) == 1) speedToExplore = FAST_SPIN; 
               else speedToExplore = (-FAST_SPIN); 
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               ROS_INFO("Turning randomly. %.0f degrees, at a rate of %.0f 
deg/s.", RAD2DEG(stepToTake), RAD2DEG(speedToExplore)); 
               subState++; 
           } 

       } 

   } 

 

   // Spin to new position and bumble again 

   if (subState == 2) { 
       doneMoving = travel(0, 0, stepToTake, speedToExplore); 
       if (doneMoving) subState++; 
   } 

 

   if (subState == 3) { 
       // Check if this direction is open 

       if (minLaserDist < (SLOW_DOWN_DIST / 2.0)) { 
           // Not open, swing around to opposite side 

           subState++; 
           stepToTake = 2 * stepToTake; 
           speedToExplore = -speedToExplore; 
       } 

       else subState = 0; 
   } 

 

   // Swing around to other side 

   if (subState == 4) { 
       doneMoving = travel(0, 0, stepToTake, speedToExplore); 
       if (doneMoving) subState = 0; 
   } 

} 

 

float centeredAngle(float low, float high) 
{ 

   // Find the range we're allowed 

   float range = high - low; 
 

   // Gets a random number in the range 

   float angle = rand() % int(range); 
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   // Recalculate new angle, weighed towards 0 (to keep the robot going 

centered) 

   const float weight = 3.0;  // Weighing power, the higher this is the 
tighter around 0 the results 

   angle = pow(angle, weight) * (range / pow(range, weight)); 
 

   // Add offset for the start of the range 

   angle = angle + low; 
 

   return angle; 
} 

 
Appendix F : globals.h Code 
/* Global declaration file 

 

All libraries are #include'd here so we only have to call 

#include "globals.h" once at the start of every file. It also 

serves the more important purpose of allowing the global 

variables to be shared across multiple files without issue 

(as long as it is used correctly! (as with most things)). 

 

This allows callback functions to be defined seperately of 

the main file for easier collaboration. 

 

To add global variables they need to be defined once in the 

conventional sense in the .cpp file. Then it has to be once again 

defined in this file, prefaced with "extern" so the compiler 

knows that the global variable is defined in another place. 

 

For example with the bumper pressed variable: 

 

   // Conventional declaration in "bumper.cpp" 

   bool any_bumper_pressed = false; 

 

   // Extern declaration in this file 

   extern bool any_bumper_pressed; 

   // Note the lack of a value assignment here 

 

*/ 

 

22 



#ifndef GLOBAL_HEADER 
#define GLOBAL_HEADER 
 

// Libraries we need 

#include <ros/console.h> 
#include "ros/ros.h" 
#include <geometry_msgs/Twist.h> 
#include <kobuki_msgs/BumperEvent.h> 
#include <sensor_msgs/LaserScan.h> 
#include <nav_msgs/Odometry.h> 
#include <tf/transform_datatypes.h> 
#include <stdio.h> 
#include <cmath> 
#include <chrono> 
 

// Some misc. stuff 

const uint8_t N_BUMPER = 3; 
#define RAD2DEG(rad) ((rad) * 180. / M_PI) 
#define DEG2RAD(deg) ((deg) * M_PI / 180.) 
 

// Motion variables 

extern float angular; 
extern float linear; 
const float SLOW_SPIN = (M_PI/12); 
const float FAST_SPIN = (M_PI/6); 
const float SLOW_MOVE = 0.1; 
const float FAST_MOVE = 0.25; 
const float MAX_LIN = 0.25; 
const float MAX_ROT = (M_PI/6); 
 

// Robot state 

extern u_int8_t state; 
const u_int8_t SCAN_STATE = 0; 
const u_int8_t EXPLORE_STATE = 1; 
const u_int8_t BUMPER_STATE = 2; 
 

// Odometery values 

extern float posX, posY, yaw; 
 

// Bumper values 
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extern uint8_t bumper[3]; 
extern bool anyBumperPressed; 
extern uint8_t lastBumper; 
 

// Laser related values 

extern float minLaserDist; 
extern int32_t nLasers, desiredNLasers; // Number of laser beams 
available, how many we will store given our desired range 

extern int32_t desiredAngle;    // Desired view range aropund center axis, 
in degrees 

extern float aveLaserDist; 
 

// Motion related 

const float WALL_CLEARANCE = 0.1;   // Distance to keep from obstacles 
const float SLOW_DOWN_DIST = 0.3;     // Proximity to start slowing slow 
down at 

const float EXPLORE_STEP = 0.75;     // Maximum exploration step to take 
#endif 

 
Appendix G : laser.h Code 
#ifndef LASER_HEADER 
#define LASER_HEADER 
 

#include "globals.h" 
 

// Laser related functions 

void laserCallback(const sensor_msgs::LaserScan::ConstPtr& msg); 
 

#endif 

 
Appendix H : laser.cpp Code 
#include "laser.h" 
 

// Laser related values 

float minLaserDist = 0;         // Minimum distance picked up but most 
recent laser scan 

int32_t nLasers = 0;            // Number of laser beams available 
int32_t desiredNLasers = 0;     // Number of lasers we will store given 
our desired range 
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int32_t desiredAngle = 10;      // Desired view range around center axis, 
in degrees 

float aveLaserDist = 0;         // Average laser distance on last scan 
 

void laserCallback(const sensor_msgs::LaserScan::ConstPtr& msg) 
{ 

   // Set globals to defaults 

   minLaserDist = std::numeric_limits<float>::infinity(); 
   aveLaserDist = 0; 
 

   nLasers = (msg->angle_max - msg->angle_min) / msg->angle_increment; 
   desiredNLasers = DEG2RAD(desiredAngle)/msg->angle_increment; 
   //ROS_INFO("Size of laser scan array: %i and size of offset: %i", 

nLasers, desiredNLasers); 

   //ROS_INFO("Width of laser scan array %.3f to %.3f", 

RAD2DEG(msg->angle_min), RAD2DEG(msg->angle_max)); 

 

   // Find minimum distance in selected FOV range 

   // Set up loop limits based on our desired range 

   uint32_t startIndex = 0, endIndex = nLasers; // Default to max range 
   if (desiredAngle * M_PI / 180 < msg->angle_max && -desiredAngle * M_PI 
/ 180 > msg->angle_min) { 
       // If narrorer than allowed range 

       startIndex =  nLasers / 2 - desiredNLasers; 
       endIndex = nLasers / 2 + desiredNLasers; 
   } 

  

   // Loop through finding minimum and adding non-infinite values to get 

an average 

   for (uint32_t laser_idx = startIndex; laser_idx < endIndex; 
++laser_idx) { 
       float reading = msg->ranges[laser_idx]; 
       minLaserDist = std::min(minLaserDist, reading); 
       if ((reading > 0) && (reading != 
std::numeric_limits<float>::infinity())) { 
           aveLaserDist = aveLaserDist + reading; 
       } 

   } 
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   aveLaserDist = aveLaserDist / float(nLasers); // Divide sum to get 
average 

 

   // The laser scanner we use has a lower limit of 0.45m, anthing closer 

is registered as infinity. 

   // So if the minimum recording is 0.45m or inf, we treat it as a 

contact 

   if (minLaserDist < 0.46) minLaserDist = 0; 
   if (minLaserDist == std::numeric_limits<float>::infinity()) 
minLaserDist = 0; 
 

   ROS_DEBUG("Laser scan complete. Min: %.2fm, Average: %.2fm.", 
minLaserDist, aveLaserDist); 
} 

 
Appendix I : movement.h Code 
#ifndef TEAM_MOVEMENT_HEADER 
#define TEAM_MOVEMENT_HEADER 
 

#include "globals.h" 
 

void odomCallback (const nav_msgs::Odometry::ConstPtr& msg); 
bool monitorMotion (); 
void setMotion(double dist, double linSpeed, double rot, double rotSpeed); 
 

/** @name travel 
  *  @brief Use this for controlled travel by repeatedly calling it. 
  *  @param  dist Linear distance to travel (magnitude) 
  *  @param  linSpeed Linear velocity (determines forwards or back) 
  *  @param  rot Rotational displacement in radians (magnitude) 
  *  @param  rotSpeed Rotational velocity rad/s (+ive is left) 
  *  @return  If the movement is complete, true. 
  * 

  *  @note It knows when you call it the first time or change course, so 
long as the parameters change. 

  *  (Calling travel(1,1,0,0) and then travel(1,1,0,0) again after that is 

completed will not register 

  *  as a new "move", these need to be seperated by a unique call such as 

travel(0,0,0,0) to repeat) 

  */ 
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bool travel(double dist, double linSpeed, double rot, double rotSpeed); 
 

/** @name setHeading 
* @brief Will align the robot optimally with some absolute heading. 
* @param heading The absolute heading (rad) to aim for 
* @param speed Magnitude of rotation (rad) 
* @return If the movement is complete, true. 
* */ 

bool setHeading(float heading, float speed); 
#endif 

 
Appendix J : movement.cpp Code 
#include "movement.h" 
 

// Movement values 

float angular = 0.0; // Global 
float linear = 0.0;  // Global 
 

// File scoped globals 

float distanceRemaining, prevX, prevY; 
float rotationRemaining, prevYaw; 
float rotMaintain, linMaintain; 
 

// Odometery values 

float posX = 0.0, posY = 0.0, yaw = 0.0; 
 

void odomCallback (const nav_msgs::Odometry::ConstPtr& msg) 
{ 

   posX = msg->pose.pose.position.x; 
   posY = msg->pose.pose.position.y; 
   yaw = tf::getYaw(msg->pose.pose.orientation); 
  

   //ROS_INFO("Position: (%f, %f) Orientation: %f rad or %f degrees.", 

posX, posY, yaw, RAD2DEG(yaw)); 

} 

 

bool monitorMotion () 
{ 

   //Maintain speeds 

   angular = rotMaintain; 
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   linear = linMaintain; 

 

   // See how mauch distance has been traversed 

   float dx = posX - prevX; 
   float dy = posY - prevY; 
   float displacement = sqrt((dx * dx) + (dy * dy)); 
   prevX = posX; 

   prevY = posY; 

 

   // Find remaining distance to travel 

   distanceRemaining = distanceRemaining - displacement; 

   if (distanceRemaining <= 0.0) linear = 0; // Stop 
 

   // Monitor rotational displacement 

   displacement = std::abs(yaw - prevYaw); 
   // Check if displacement is too big (crossing from -pi to +pi) 

   // Heading is kept in the range [-pi,+pi] so when turning over pi 

   // e.g. -0.98PI to 0.98PI, we need this case 

   if (displacement > M_PI) { 
       displacement = (M_PI - abs(yaw)) + (M_PI - abs(prevYaw)); 
   } 

   rotationRemaining = rotationRemaining - displacement; 

   if (rotationRemaining <= 0.0) angular = 0; // Stop when we've rotated 
as required 

   prevYaw = yaw; 

 

   rotMaintain = angular; 

   linMaintain = linear; 

 

   // Return true if motion completed (no speed) 

   bool doneMotion = (angular == 0) && (linear == 0); 
  

   if (doneMotion) ROS_DEBUG("Reached destination."); 
   else { 
       ROS_DEBUG("In motion: D:%.2f S:%.2f | A:%.0f S:%.0f", 
distanceRemaining, 

       linear, RAD2DEG(rotationRemaining), RAD2DEG(angular)); 
   } 

   return doneMotion; 
} 
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void setMotion(double dist, double linSpeed, double rot, double rotSpeed) 
{ 

   // Record new travel requirements 

   distanceRemaining = std::abs(dist); 
   rotationRemaining = std::abs(rot); 
 

   // Set start point 

   prevX = posX; 

   prevY = posY; 

   prevYaw = yaw; 

 

   // Need to change the global variable 

   linear = linSpeed; 

   angular = rotSpeed; 

 

   // Records speeds to maintain 

   rotMaintain = angular; 

   linMaintain = linear; 

 

   ROS_DEBUG("Set up motion: D:%.2f S:%.2f | A:%.0f S:%.0f", 
distanceRemaining, linear, 

       RAD2DEG(rotationRemaining), RAD2DEG(angular)); 
} 

 

bool travel(double dist, double linSpeed, double rot, double rotSpeed) 
{ 

   static double pd = 0, pls = 0, pr = 0, prs = 0; // Used to store 
previous state of inputs 

 

   // Check if this is a repeated call 

   bool repeatedCall = false; 
   if ((dist == pd) && (linSpeed == pls) && (rot == pr) && (rotSpeed == 
prs)) repeatedCall = true; 
   pd = dist; 

   pls = linSpeed; 

   pr = rot; 

   prs = rotSpeed; 

 

   bool doneMotion = false; 
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   if (repeatedCall == true) { 
       // Repeated call, so we're maintaining course 

       doneMotion = monitorMotion(); 
   } 

   else { 
       // New call, set new course 

       setMotion(dist, linSpeed, rot, rotSpeed); 
   } 

 

   return doneMotion; 
} 

 

bool setHeading(float heading, float speed) 
{ 

   static float lastHeading = 0, lastSpeed = 0; // Used to monitor 
parameters 

   static float change = 0, rotVelocity = 0; // Internal parameters to 
describe the change 

   bool doneAlignment = false; 
 

   if ((lastHeading == heading) && (lastSpeed == speed)) { 
       // Parameters didn't change, repeat travel() call 

       doneAlignment = travel(0, 0, change, rotVelocity); 
   } 

   else { 
       // New parameters, therefore an initial call 

       // Record parameters for future reference 

       lastHeading = heading; 

       lastSpeed = speed; 

 

       // Determine change needed 

       float changeForward, changeBackward, tempHeading; 
 

       // Find forward displacement 

       if (heading < yaw) tempHeading = heading + 2 * M_PI; // Loop around 
       else tempHeading = heading; 
       changeForward = tempHeading - yaw; 

 

       // Find backwards displacement 
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       if (heading > yaw) tempHeading = heading - 2 * M_PI; // Loop back 
       else tempHeading = heading; 
       changeBackward = yaw - tempHeading; 

 

       ROS_DEBUG("Going forward %.0f deg, backwards %.0f.", 
RAD2DEG(changeForward), RAD2DEG(changeBackward)); 
 

       // Compare to see which direction is optimal 

       if (changeBackward < changeForward) { 
           // Going backwards 

           rotVelocity = -speed; 

           change = changeBackward; 

           ROS_INFO("Aligning to heading %.0f deg, currently at %.0f. 
Change of %.0f right.", 
               RAD2DEG(heading), RAD2DEG(yaw), RAD2DEG(change)); 
       } 

       else { 
           // Going forwards 

           rotVelocity = speed; 

           change = changeForward; 

 

           ROS_INFO("Aligning to heading %.0f deg, currently at %.0f. 
Change of %.0f left.", 
               RAD2DEG(heading), RAD2DEG(yaw), RAD2DEG(change)); 
       } 

 

  

 

       // Start moving as needed 

       doneAlignment = travel(0, 0, change, rotVelocity); 
   } 

 

   if (doneAlignment) ROS_INFO("Aligned with new heading."); 
   return doneAlignment; 
} 

 
Appendix K : scanning.h Code 
#ifndef SCANNING_HEADER 
#define SCANNING_HEADER 
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#include "globals.h" 
/** @name scanAroundSpot 
* @brief Scans around robot current position and select a new heading. 
* @param subState Substate variable from main loop 
**/ 

void scanAroundSpot(u_int8_t &subState); 
 

/** @name headingDecider 
* @brief Scores and selects headings based on readings taken as robot 
rotated 

* @param yawVals Yaw values at each step of scan 
* @param minDists Minimum distance recorded by laser scanner at each step 
* @return Absolute heading (rad) that was selected. 
*/ 

float headingDecider(const float yawVals[], const float minDists[]); 
 

#endif 

 
Appendix L : scanning.cpp Code 
#include "scanning.h" 
#include "movement.h" 
 

// File globals 

const uint8_t NUMBER_OF_STEPS = 12; // Number of stops taken around the 
circle 

const float STEP_INCREMENT = 2 * M_PI / NUMBER_OF_STEPS; 
 

const float SCAN_SPEED = FAST_SPIN; 
const float ALIGN_SPEED = FAST_SPIN; 
 

void scanAroundSpot(u_int8_t &subState) { 
   static float yawValues[NUMBER_OF_STEPS]; 
   static float minDistances[NUMBER_OF_STEPS]; 
   static float targetHeading; 
 

   static uint8_t stepsCompleted; 
   bool movementDone = false; 
 

   // Reset for each spin 

   if (subState == 0) { 
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       stepsCompleted = 0; 
       subState++; 
       ROS_INFO("Performing 360-degree scan."); 
   } 

 

   // Rotating 

   if (subState == 1) { 
       movementDone = travel(0, 0, STEP_INCREMENT, SCAN_SPEED); 
 

       if (movementDone) { 
           // Record parameters for this step 

           yawValues[stepsCompleted] = yaw; 
           minDistances[stepsCompleted] = minLaserDist; 
 

           ROS_INFO("Step %d. Distance: %.2f, Yaw: %.0f.", stepsCompleted, 
minLaserDist, RAD2DEG(yaw)); 
 

           stepsCompleted++; 
 

           // Check if the robot needs to do more steps 

           if (stepsCompleted < NUMBER_OF_STEPS) travel(0, 0, 0, 0); // 
Clears old travel instruction (so we can repeat the same step one) 

           else { 
               // Find ideal heading and head that way for the next 

substep 

               targetHeading = headingDecider(yawValues, minDistances); 
               subState++; 
               ROS_INFO("Scan completed, heading selected %.0f.", 
RAD2DEG(targetHeading)); 
           } 

       } 

   } 

 

   // Align to heading to take 

   if (subState == 2) { 
       movementDone = setHeading(targetHeading, ALIGN_SPEED); 
 

       if (movementDone) state = EXPLORE_STATE; 
   } 

} 
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float headingDecider(const float yawVals[], const float minDists[]) { 
   float decidedHeading; 
   // Calculate a score for each step 

   float scores[NUMBER_OF_STEPS]; 
   float totalScore = 0; 
   uint8_t selectedIndex = 0; 
  

   for (uint8_t i = 0; i < NUMBER_OF_STEPS; i++) { 
       scores[i] = minDists[i]; 
 

       totalScore = scores[i] + totalScore; 
   } 

 

   if (totalScore == 0) { 
       ROS_ERROR("Laser scan came back with only 0's! Going straight."); 
       return yaw; 
   } 

 

   // Weighted random for openness 

   // Selects a random number from 0 to the cumulative scores for a scan. 

   // Whichever scan step "buckets" this value is selected 

   float selectedValue = 0; 
   float accumulatedScore = 0; 
 

   // Gets the selected value 

   int32_t maxValue = int(floor(totalScore * 100.0)); // Get upper limit 
of random value 

 

   selectedValue = rand() % maxValue; 
   selectedValue = selectedValue / 100.0; 
 

   for (uint8_t i = 0; i < NUMBER_OF_STEPS; i++) { 
       accumulatedScore = scores[i] + accumulatedScore; 
 

       // Once the value is "bucketed" exit 

       if (accumulatedScore > selectedValue) { 
           selectedIndex = i; 
           break; 
       } 
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   } 

   ROS_INFO("Total score %.2f, selected value %.2f, index %d.", 
totalScore, selectedValue, selectedIndex); 
 

   /* 

   // Just going for max 

   for (uint8_t i = 1; i < NUMBER_OF_STEPS; i++) { 

       if (scores[i] > scores[selectedIndex]) selectedIndex = i; // Update 

to new max 

   } 

  

   */ 

   decidedHeading = yawVals[selectedIndex]; 
   return decidedHeading; // Return ideal yaw 
} 
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