
Contest 2 Report
MIE443 Project

Savo Bajic - 1003051485
Maximilian Glidden - 1002277396
Catherine Kucaba - 1003278026

1.0 Problem Definition and Design Requirements 2
1.1 Requirements and Constraints 3

2.0 Methods and Strategy 5

3.0 Detailed Robot Design and Implementation 6
3.1 Sensory Design 6

3.1.1 Depth Camera/Laser Scanner 6
3.1.2 RGB Video Camera 6
3.1.3 Odometry 6

3.2 Controller Design 7
3.2.1 Motion Planning and Execution 9
3.2.2 Image Processing and Recognition 10
3.2.3 Outputting Data 13
3.2.4 Test Files 14
3.2.5 Other Supporting Code Used 15

4.0 Future Recommendations 16

5.0 Contribution Table 18

6.0 Appendices 19
Appendix A: Tag Preprocessing 19
Appendix B: Scene Processing 21
Appendix C: Example Output File 24
Appendix D: Notable vision tests 25
Appendix E: contest2.cpp 29
Appendix F: boxes.h 34
Appendix G: boxes.cpp 34
Appendix H: fileWrite.h 37
Appendix I: fileWrite.cpp 37
Appendix J: imagePipeline.h 40
Appendix K: imagePipeline.cpp 42
Appendix L: navigation.h 53
Appendix M: navigation.cpp 53
Appendix N: pathPlanning.h 55
Appendix O: pathPlanning.cpp 57
Appendix P: robot_pose.h 64
Appendix Q: robot_pose.cpp 64
Appendix R: tests.h 65
Appendix S: tests.cpp 66
Appendix T: webcam_publisher.cpp 69

7.0 References 71

1

1.0 Problem Definition and Design Requirements
The objectives and requirements for this portion of the project are outlined in the Contest 2
Manual [1]. The primary goal of this contest is to develop an algorithm that allows a robot to
autonomously navigate a known environment to locate and identify ten objects placed at
different locations. The robot must return to its starting location when it has finished tagging the
objects and must complete the entire contest within a certain time limit. An image (referred to as
a tag) is placed on each object for identification purposes. The team was provided a practice map
of a practice environment, shown in Figure 1. One aspect to note is that a “known” environment
does not refer to the team knowing in advance the trial environment and being able to program
with it in mind. Instead, it refers to a map being provided to the robot prior to executing the code
for localization purposes. Due to the Covid-19 pandemic, this project is completed only using
software, as it would typically involve a physical robot navigating a real environment.

Figure 1: Example of a practice environment with 10 objects and TurtleBot [1]

The robot is simulated using TurtleBot and it navigates an environment created in gazebo. The
environment is contained within a walled enclosure and only includes the objects the robot is to
navigate to and identify (i.e., there will not be additional objects or obstacles in the area that the
robot needs to identify or avoid). There are three main components in the algorithm that
correspond to what the robot must accomplish in this contest: navigation, path planning, and
image processing/recognition. The robot is to travel to specific locations in the environment; this
information is provided by the teaching team via a dataset of coordinates and orientations of the
objects prior to running the code. In order to efficiently move to these positions, an algorithm
must be created to solve the traveling salesman problem presented in this contest. Lastly, once a
robot nears an object, it must capture an image of the tag on the object and correctly identify it.

2

The team utilized the AMCL (Adaptive Monte Carlo Localization) ROS package as a
localization system for the robot. It is a probabilistic system that tracks the position of a robot,
using a particle filter, against a known map. The team also used RVIZ with the localization
system in order to initialize the starting position of the robot (with its starting position in gazebo)
and to converge AMCL before running and testing the code. This task will be completed by the
teaching team before testing the program during the trials. The robot will be tested in two trials,
with the best counting towards the final mark. Scoring is based on the navigation to each object
as well as the correct identification of image tags (this includes stating duplicates) or determining
if no tag is present on the object (a “blank”).

The concepts required for this project can be applied to many other industries that are starting to
use and rely on robots to execute tasks typically performed by humans. For example, a similar
scenario is presented for service robots in the food or medical industry. Robots that take orders
and deliver food to tables must efficiently navigate to different locations in a restaurant and tag
the corresponding tables correctly to ensure the patrons receive the correct orders. The same idea
can be applied to medical settings, where robots are used to deliver medications throughout
hospitals. Another industry that specifically utilizes computer vision is manufacturing, which
requires robots to properly identify components to either sort them or construct an
assembly/subassembly with them.

1.1 Requirements and Constraints
For this contest, there are some design requirements and constraints that the team must take into
account when developing the algorithm for the robot. These requirements can be found in the
Contest 2 Manual [1] and are also presented and explained below.

1. The contest environment will be a three-dimensional simulated environment with static
objects contained in a 6x6 m2 area.

2. The initial location of the robot, when the map was created, determines the origin of the
world coordinate frame.

a. The origin is an inherent characteristic of the map.
b. All distances in the map coordinate frame are measured with respect to this origin.
c. The robot may not start at the origin of the world coordinate frame when the map

is loaded.
3. There are 10 objects enclosed in the environment that the robot needs to navigate to and

identify (example shown in Figure 1).
a. There are no additional objects or obstacles in the environment.
b. 1-2 objects will have duplicate tags, 1-2 objects will have no tag (“blank”), and

the remainder will have unique tags.
c. Each object is represented by a box of dimensions 50x32x40 cm3 (lxwxh).

4. The location of an object is defined by the coordinates of its centre and orientation
(x,y,𝜑), where 𝜑 is about the z-axis (see Figure 2).

a. Locations are measured from the object’s local frame (Figure 3) with respect to
the world coordinate frame (Figure 2) at the origin of the map.

3

b. Locations are defined by two vectors: a coordinate vector that defines the object’s
position in x and y, and an orientation vector that contains the object’s rotation
about z.

5. The tags are high contrast images (in greyscale) with unique features and are placed in
the centre of one of the long faces of the objects (see Figure 3 for an example).

6. For testing, the team was provided with the following:
a. A 2D map of the contest environment (generated with gmapping), including the

10 testing objects.
b. Test locations (object coordinates/orientations) of the 10 objects, measured with

respect to the world coordinate frame of the practice map.
c. A dataset of 15 potential image tags that could be used during the contest,

including a “blank” tag. The tags for the contest are strictly limited to this dataset.
7. The teaching team will generate a new set of objects and object locations (coordinates) to

test the code in the trials that is not known to the team in advance.
a. The program must be robust enough to handle object location changes.

8. The teaching team will choose the starting location of the robot in the map and will
initialize the robot position/orientation in RVIZ prior to running the code.

9. The robot must use the provided navigation library and the RGB camera on the Kinect
sensor to perform SURF feature detection.

10. The robot must navigate to and identify all provided objects, return to its starting
position, and indicate it is finished within a maximum time limit of 8 minutes.

11. The program must output to a file all of the tags it identified in the exact order they were
found including the object location and if the tag is a duplicate.

Figure 2: World coordinate frame [1] Figure 3: Object local frame and example of
an image/tag [1]

4

2.0 Methods and Strategy
The team implemented a program, prior to creating the array to solve the traveling salesman
problem (TSP), which determines the exact location the robot should navigate to for each object.
Due to the system utilized, the object coordinates provided to the robot are not valid locations to
travel to as they are located at/within the object (and the robot can only travel to regions of
empty space). The code looks to find a valid position in front of or near the image side of an
object in order to ensure the robot has a good enough view of the box to capture an image. This
creates a robust system that will always pick the most optimal viewing locations (close to and
directly looking at the image side of the object) before resorting to other, less effective positions
that may result in worse capture images for the vision system.

Once the algorithm determines the optimal viewing locations for each object, the coordinates are
plugged into the TSP array. The team chose to implement a brute force algorithm in order to
solve the TSP for this contest. This means that the program determines every possible Hamilton
circuit for the given layout and chooses the ordering that creates the smallest weight for the
circuit. The advantage of this system is that it is guaranteed to find the most optimal path
regardless of object locations/orientations, and thus provides the most efficient path every time.
The tradeoff is that the algorithm itself is inefficient in terms of computation time. As the number
of boxes increases, the amount of time to complete the computations grows exponentially. For
this contest, there are 10 objects, resulting in a computation time of 3-5 seconds. Given that the
maximum time limit is 8 minutes, this computation takes, at most, 1% of the available time.
Other methods, such as the Nearest Neighbour Algorithm, are more efficient in computation but
produce non-optimal paths, which may take longer for navigation. Thus, the team opted for the
brute force method, as it was quick and reliable in this situation.

For image processing and recognition, the team chose to take an image sample once the robot
completed its motion and is stationary. Although not part of this contest, this approach is good
for if the robot was traveling over uneven surfaces (where the camera may be shaky). The
processing algorithm reduces redundant information in the captured image, such as removing
sections of the image that are the sky/walls. This prevents these aspects of the image from
slowing or impeding computation time, as well as possibly resulting in poor image recognition
due to these regions acting as noise. During feature detection, the program compares features to
find the most compatible match based on the quantity of shared features. However, in instances
where multiple images are present (due to viewing angle, etc.), the team’s algorithm also uses
size as a factor during comparison. In the captured image, the code favours tags that are in the
foreground, and thus the largest, while ignoring tags that may be picked up in the background by
the camera.

5

3.0 Detailed Robot Design and Implementation

3.1 Sensory Design
The simulated Turtlebot platform is equipped with a variety of sensors to aid in navigation,
including touch bumpers, a depth camera, cliff sensors, and odometry data. As in Contest 1, the
environment the robot is exploring in Contest 2 is flat and enclosed. Cliff sensors do not produce
much useful information; there are no edges or changes in elevation for the robot to detect. In
contrast with Contest 1, a map of the environment for Contest 2 is provided to the robot, along
with the position of objects in the space. Since these obstacle locations are known and visible to
the robot prior to movement, the use of touch bumpers was not required for successful
completion of the contest. The laser scanner and odometry were used through the AMCL and
move_base ROS nodes to aid in localization and obstacle avoidance. The Microsoft Kinect’s
RGB camera was used directly for image acquisition. Of all the sensors, only the RGB camera’s
data is regularly used in the team’s code, the other sensors are handled directly by the
aforementioned ROS topics without any action required of the team’s code to aid in their roles.

3.1.1 Depth Camera/Laser Scanner
The Turtlebot is equipped with a Microsoft Kinect camera system, which integrates both an RGB
and depth camera. The depth camera can be used to approximate the functionality of a laser
scanner, which generates a distance at each point in a one-dimensional array from the depth
camera input. The motivation for using the depth camera in this way was to provide sensory
input to the move_base and amcl nodes about the presence and proximity of obstacles before the
robot. This depth data could then be used to avoid obstacles for move_base, as well as help plan
motion and localize by recognizing particular geometry from the map relative to the robot for the
amcl nodes.

3.1.2 RGB Video Camera
The Turtlebot’s Kinect’s integrated RGB camera provides a full colour video feed and is used
primarily for visually identifying objects present in the environment (scene) before the robot.
This ability to see allows the team to collect the visual data needed to identify the tags present on
the side of boxes for this competition using image processing techniques and routines that are
part of imagePipeline’s member functions.

3.1.3 Odometry
Encoders on the motors of the turtlebot provide information on the rotational velocity of each
wheel, which is used with the forward differential kinematics model to produce linear and
rotational velocities. Integrating these velocities over time produces an estimate of the robot’s
position and heading; this is the odometry data supplied by the odom topic.

Odometry data is used by the move_base node as an input to the local planner so it is aware of
the rough distance travelled. Similarly, this is used by amcl to determine the estimated shift for
the robot’s position distribution which helps maintain accurate localization which in turn aids
proper pathfinding and navigation for the robot between its destinations.

6

3.2 Controller Design
The team’s code for this contest focuses on autonomous navigation and image processing to
achieve success in this contest. To ensure success in as many cases possible the robot may find
itself in, the team did not design any behaviours to have special cases for specific circumstances
that may pose an issue, and instead the team instead focused on developing a solid set of
behaviours to operate well in the service environment in most circumstances. This prevents the
possibility of unpredictable behaviour brought in by the unexpected triggering of special cases.

To this end, the team prescribes four primary states for the robot executed sequentially, listed
below:

1. Initialization
2. Movement to boxes (and return to start once complete)
3. Image processing
4. Closing

Stages two and three are repeated until the robot visits (or attempts to visit) all the boxes, at
which point the robot will return its starting location as required by this contest and proceed to
stage four. The file responsible for controlling the state of the robot is contest2.cpp.

The robot control code begins by initializing itself. This begins by recording the start time (to
ensure the robot knows when it is running out of time) and loading in files containing
information about the boxes in the environment such as their positions and reference images for
the tags. Following the box data collection, ROS is initialized with a subscriber prepared for
positional information to be passed on to robotPose from the AMCL service provided by ROS.
After the positional data service is configured the image processing system is initialized so it
knows what to look for when needed and it has a subscription to the video from the Kinect
cameras. This is explained in greater detail in section 3.2.2.

With the input systems initialized, the pathfinding is started to plan the motions the robot should
undertake based on the starting point and the locations of all the boxes. This path planning
determines the viable stops for the robot to visit to best see each box’s tag and then finds an
optimal path between them. This is covered in greater detail in section 3.2.1.

Once the path is determined, under normal operation, the robot will begin to execute this plan
and begin moving to the boxes (going from the initialization state to the motion state). If there is
testing enabled, the tests are performed instead on these initialized systems (refer to section 3.2.4
for greater detail).

The movement stage is simple, and makes use of the team’s goToStop function to attempt
reaching the next box in the environment according to the planned route (if it is returning to the
start location goToCoords is used instead), these functions are explained more in section 3.2.1. If
it was trying to reach a box, the code progresses to image processing. If it was returning to the
start point at the end of a run, it would exit the main loop and proceed to the closing stage.

7

Figure 4: Rviz Visualization for the mapping, localization, and path planning used by
moveToGoal. The robot is the black circle, the colour gradient emanating from its location is its
pathfinding “warmth” (red is the cheapest way to approach its goal). There is a second layer of

colours faintly visible across the entire map, the cost layer, showing the cost incurred by
travelling through these regions based on the proximity to an obstacle (black shapes).

Regardless of the success the robot had in reaching its destination, it scans the environment to
attempt spotting a tag on the box, using a process explained in section 3.2.2, and then records the
result for this stop. The choice to scan regardless of if the motion was successful or not is
grounded in the team’s observation that the robot faces the direction it is travelling in, and that a
majority of these failures occurred in the final approach to the box. So should it fail to reach a
box, there is a good chance the robot is at least roughly facing it and thus can potentially make a
positive match, even if it is not in the ideal position relative to the box.

Following the image scan, the results the robot has collected up to that point are recorded in the
output file using the output system explained in section 3.2.3. These results are recorded after
each stop so all data is not lost in the event the robot’s execution is interrupted, so there is at least
a portion of submittable results that can be used.

The main loop concludes by incrementing to the next box and checking the robot has not passed
the time limit. Should the robot be running overtime, it immediately proceeds to the closing
stage. Otherwise it begins the next loop iteration with the motion stage.

8

In the closing stage, the user is informed the robot is going to finish (either due to it finishing the
route properly or it running out of time), one final set of results is recorded, the user is informed
of the output file’s location on their system, and then the code finishes.

3.2.1 Motion Planning and Execution
Given that the operating environment and locations of target objects are known prior to robot
movement for contest 2, it is possible to pre-plan a route from coordinate to coordinate. Due to
the tight time limit imposed for the contest, an optimal or near-optimal route was desired. The
robot must visit every node exactly once, and then return to its starting place, forming a
Hamilton circuit. This is analogous to solving the classical travelling salesman problem (TSP).
The TSP can be solved optimally via brute force for small sets of nodes, but this approach is not
computationally efficient. With n nodes and holding the starting point the same for all possible
paths, the naive brute force algorithm must evaluate (n-1)! unique Hamilton circuits. Contest 2
consists of 10 target nodes and a fixed starting position (n = 11), resulting in ~4 million unique
Hamilton circuits. This is a small enough number of permutations to make a brute force approach
feasible for path planning in the time constrained environment of these contests.

The brute force algorithm for solving the TSP can be broken into two sections. A preprocessing
step receives the pose of each object, generates a target node, and creates an adjacency matrix
containing the cost between nodes. Object coordinates are supplied by the boxCoords vector.
These coordinates are used to generate a target robot pose for image acquisition of each object in
the faceBoxPoint function. This is necessary to ensure the robot is well-positioned to “see” the
image; far enough away to capture most of the image and at an acceptable viewing angle. The
function makes use of the move_base node’s make_plan service to check for a reachable point in
the neighbourhood of the target object. Starting from a point 0.35m directly in front of the image,
the function evaluates points in a widening arc and distance, until it finds a feasible location for
the robot to acquire images from. This generates a vector containing the pose of the robot at
which it will view each object. The poses are the nodes for which the optimal Hamilton circuit
will be found.

The poses generated by faceBoxPoint were used to fill an adjacency matrix. This is an 11 x 11
matrix, where the entry aij represents the cost of traversing between the ith and jth nodes. The cost
associated with traversal was selected as the straight-line distance between points, which is
reflective of the time taken to move between nodes given the mostly open environment. Each
entry in the matrix could then be computed directly from the x and y-coordinates of the nodes as:

aij = (𝑥
𝑖
− 𝑥

𝑗
)2 + (𝑦

𝑖
− 𝑦

𝑗
)2

The second step for solving the TSP is to calculate the total cost of each possible route. A default
movePlan vector containing the index of each node in numerical order is initialized. The cost of
the default case is calculated by summing the entries of the adjacency matrix for the entries in
movePlan. This cost is stored as the initial best cost. The set of all possible Hamilton circuits is
iterated over using the std::next_permutation function. This function in the C++ standard library
rearranges the elements in a range into the next lexicographically greater permutation, returning
true if such a permutation exists, and false otherwise. Lexicographic ordering is an extension of

9

alphabetic ordering to include numbers and other symbols. The lexicographically smallest
permutation has the elements sorted in ascending order, while the lexicographically largest
permutation has the elements sorted in descending order. By starting with the lexicographically
smallest ordering of the movePlan vector, next_permutation can be used to iterate through all
possible Hamilton circuits. This function serves as the condition for a while loop, in which the
cost of the current permutation is calculated and compared to the lowest cost. If the current cost
is less than the lowest cost, the lowest cost becomes the current cost. This loop iterates until there
are no lexicographically larger permutations of the set of nodes, at which point next_permutation
returns false, and the loop terminates. The permutation with the lowest cost is passed out of the
loop, cleaned up for use in the main control loop, and returned. The resulting output is a vector
containing the indexes of the nodes in their optimal order of travel to, starting from the robot's
starting position, then stopping to view each box, and then finally returning to its starting
position.

Motion is executed using the provided moveToGoal function which attempts to autonomously
drive the robot to a specified position and orientation. It was not altered by the team, however it
was overloaded so the team could pass in vectors to represent the goal position instead of three
separate floating point numbers.

A separate function goToCoords, wraps the use of moveToGoal so the team’s motion failure
recovery method could be implemented and edited in one place instead of multiple locations in
the main code. Should moveToGoal fail to reach its destination in this function, the user is
informed and the cost map is cleared before the motion is reattempted. Should that fail the user is
informed before the function returns. The team was limited in its options to try a different
“recovery” from the motion failure as motion command is limited to the provided moveToGoal
function which does not provide facilities for direct control of the robot.

A derivative of goToCoords is goToStop. This simply takes in the index of which box point
(stop) to go to, uses that to look up the coordinate vector for it and passes it to goToCoords to
execute the motion with failure recovery.

3.2.2 Image Processing and Recognition
Vision processing is an integral part of this robot as it is required to identify the tags on the boxes
in the robot’s operating environment. Vision is provided to the robot by the mounted Kinect
sensor’s visible light camera, which provides a colour (RGB) image 640 pixels wide by 480
pixels tall, at a rate of roughly 30 images (frames) per second. These images are then fed the
team’s own code based on the OpenCV library to locate tags. All code related to vision systems
is contained in the heavily modified imagePipeline.cpp and imagePipeline.h files.

The team tailored the vision code for the robot for its service environment (a simulation) and task
(identifying grayscale tags). This guided the team to exploit the very predictable and noise-free
properties inherent to a simulation, namely the way lighting is modelled.

The vision recognition system begins with its initialization when the robot code is first executed.
When initialized, the system subscribes to the raw video feed from the Kinect through ROS so it
ensures that it has access to the most up to date images of the environment. It then pre-processes

10

and stores the reference image for each possible tag. This preprocessing consists of loading them
in grayscale format, resizing the images to a ratio of 5 wide by 4 tall, then a slight Gaussian blur
is applied.

Figures 5 (left) and 6 (right): The original tag image (5) provided to the robot and the processed
result (6) stored for future use

These effects create an image that will be closer to the expected input when encountered in the
environment. Grayscaling is used to reduce the redundant information to process should it have
been stored in RGB formatting. The 5:4 ratio is used to match the aspect ratio of the box sides
(tags are stretched to this in the environment). Gaussian blur helps remove minor non-defining
features that could cause issues in recognition such as false positive matches, and prepares the
robot to deal with an off angle image.

These preprocessed tags are stored so that they do not need to be preprocessed with every
instance of a scan, reducing computation time. Initially the tags were not stored and were
dynamically prepared with every scan, this was slower and would cause segmentation faults
when there were too many successive scans due to the memory intensive processes involved and
there not being enough time for OpenCV to clear the irrelevant data.

When the robot needs to scan its view for potential tags, it takes in the most recent frame
provided by the camera of the scene before the robot. This image is preprocessed before it goes
into feature detecting and matching algorithms provided by OpenCV. The results are compared
across all tags to determine which is the most likely match.

The image preprocessing is different to the preprocessing the tags undergo, although they both
intend to simplify the matching process. While processing the tags focused on making them
easier to identify in a scene from the simulator (generalizing them), the preprocessing of the
environment image is focused on the removal of extraneous information for the algorithm so it
may focus on potential tags. This is where the team exploits the simulator’s lighting behaviour
the most. It follows these steps:

1. Remove (crop) the lowest portion of the image.
2. Blank any coloured pixels. (The R, G, and B values for a gray pixel are all equal)
3. Convert to grayscale format.
4. Blank the skybox. (The simulator sky is a set uniform colour)

11

Figures 7 (left) and 8 (right): The original scene image the robot collected from the scene (7)
and the result from preprocessing (8)

The bottom portion of the image is removed because it is always obstructed by the structure of
the robot, thus providing the robot with no potential information on any tags. Removing it helps
speed up the computations that follow. This portion is a set constant because the view is fixed
within the robot, the Kinect does not get readjusted by users, nor is it reactive to any potential
force that would adjust it in the simulation such as a collision.

The team exploited the uniform and noise free lighting as well as the “perfect” camera in the
simulation to selectively blank out colour pixels. All the tags are grayscale, so their red, green,
and blue pixel colour values are equal within a pixel. Any colour pixel (R, G, and B not all
equal) is of no use to our task and can be safely removed to avoid it affecting the feature scanner
and matcher. Shadows in the simulator do not affect this process as they proportionally darken all
RGB values the same when a pixel is grayscale so they may go from all being 102 to 90, but they
will all still be equal. These coloured pixels are set to pure black so they blend in with the black
sides of the boxes (the sides without tags), thus avoiding creating unintentional edge features.

Conversion to grayscale is done to reduce the memory and processing needed to handle the
image going forward. This is done after any colour is removed from the picture in the previous
step so it has no effect other than reducing the amount of data needed to represent the image.

The skybox shade is removed from the top of the image (going from the top where the sky
begins and going down each column until a non-sky pixel is encountered). Just with the coloured
pixels, these are set to black to avoid creating additional features. This is possible only in the
simulator since the skybox is a uniform mid-gray colour that does not blend into the edges of the
tags (which are usually on light backgrounds).

Once the scene image is preprocessed it has its numerically identifying features detected and
mapped. The team was constrained to using a SURF method for feature detections in this
contest, although we were allowed to adjust its behavior.

12

The same detector is then applied to a tag to find and log its features in the same way. These sets
of features are then passed to an OpenCV algorithm to find matching features between the two.
If the portion of matching features to features present in a tag exceeds a threshold it is considered
a possible match. If it is a possible match then an attempt is made to determine the bounding box
of the tag in the scene using the matching features in homography, this box is used to determine
the area a tag occupies in an image. If it fails to exceed a set threshold then the tag is no longer
considered a possible match. If both thresholds are passed, the area and portion are combined
into a match confidence value. This process is repeated for each potential tag.

The final step is to get the highest and second highest confidence values. The highest confidence
is compared to the second highest value to ensure it exceeds it by a certain factor, so it is the
“dominant” tag in the scene and recorded as the tag (match) identified in the scene. If there is no
tag that exceeds the minimum confidence and is “dominant” enough, then a fail to identify is
returned.

Figure 9: Side by side comparison of processed tag (left) identified as the dominant tag in the
processed scene image (right). The green bounding box and lines connecting matching features

were added to show the steps involved.

The figures used and additional intermediate images of the processing steps for vision processing
are presented in higher resolution in Appendix A for tag processing and Appendix B for scene
processing and matching. The figures shown with regards to vision processing are not
immediately present when executing the code submitted for the competition to save time and
resources, they can be made visible with minor edits to the code.

3.2.3 Outputting Data
As part of the contest requirements the team needed to prepare code to output the robot’s
findings. This was achieved with a function (writeLog) defined in the fileWrite.cpp and
fileWrite.h files. The function receives the data relating to the boxes, the path taken, and the
findings of the image scanning. It then prepares a text file (.txt) containing the results line by line
for each box, in the order the robot visits them. As required by the competition, this data is the
tag present on the box (if any), the coordinates of the box (x (m), y(m), and yaw (rad)), and if the
robot is seeing it for the first time (“new”) or a duplicate of a previous box encountered in its run

13

(“dup”). For example, if tag 2 is first encountered in the run on a box at (1.94, -1.41, 0.788) the
entry in the output file would be.

Tag 2 - (1.94, -1.41, 0.788) - new

This file is saved to the user’s “Documents” folder in their Ubuntu home directory as
team22results.txt. A full example output file is shown in Appendix C.

Initially the results were only recorded once the main loop was terminated under normal
operation (either by completing the circuit between all boxes or exceeding the time limit). The
team changed it to record its results after each vision scan so should the robot code execution be
interrupted, there will at least be a file with the results collected prior to the interruption.

3.2.4 Test Files
Although disabled in the submitted contest code, test functions were created to assess the
functionality of different aspects of the program during development. These tests are defined in
tests.cpp and tests.h, and selectively enabled by #define macros in tests.h and recompiling. These
tests were designed to be run once in the main loop and then terminate the program, therefore
only one test could be executed at a time.

There are three tests that were developed for the systems subsystems: file output, navigation /
path planning, and vision processing. They all begin with a warning to the terminal that the test
is going to be performed and the robot code will terminate afterwards before executing the actual
test.

The file output test has the robot output a file with some preset results. These results ensure that
the robot can successfully output the file in the right location, with the right data (such as correct
duplicate marks). This allowed the team to iterate through different

To test the path finding and navigation systems the robot is sent to visit each box in the order
they are loaded into the program (not the optimized loop) before returning to the start. At each
box the robot was to wait a few seconds so the end of one motion and the beginning of the next
motion were distinct to an observer, as well as outputting a message to the terminal informing the
user of its progress.

Vision testing was the most utilised of the three tests. The vision testing uses saved test images of
the different tags as they appeared in the simulation that the team collected and labelled manually
and feeds the images into the image scanner as though they are the current scene before the robot
and records the results.

The vision test function iterates through all the test files present in the testpics folder, or a subset
which have the search string (passed into the test function when called) present in their
filenames. This search functionality allowed the team to quickly iterate the image processing
code to test different cases and focus on problematic tags.

14

A notable tag that caused issues was tag_12, which initially was very difficult for the team’s
code to identify. Using the testing code and focusing on the tag_12 test images the team was able
to quickly iterate through candidate solutions until the best solution was found (resizing tag
reference images to a 5:4 aspect ratio before running the image matching code) and
implemented.

Figure 10: tag_12 reference image as provided to the team/robot

Appendix D contains some examples of the notable tests the vision system code had to analyze
and the successful results. There were between five and fifteen test images prepared for each tag
to test the system from various angles and distances relative to the box. Some tests also
introduced additional challenges that include but are not limited to: multiple potential boxes,
rotated tags, and only a portion of the tag being visible.

3.2.5 Other Supporting Code Used
The team was provided with code to hold odometry data and store it in robot_pose.cpp and
robot_pose.h. The RobotPose class is defined in these which holds the robot’s current x, y
position and orientation as phi. A callback function is also defined so this class may subscribe to
a ROS topic to be updated regularly. These files were not altered from their original state.

The team was also provided with code to load in the box and tag data and store it for use in the
team’s code in boxes.cpp and boxes.h. These files were also not altered from how they were
provided. The coordinates of each box is stored as a vector in a vector containing all boxes
coords, the reference images for each tag are stored in a vector of OpenCV Mat structures called
templates.

15

4.0 Future Recommendations
One particular issue the team would have liked more time to solve involves the navigation near
and around locations in the map where two or more objects create a narrow corridor, as shown in
the practice environment in Figure 11 below. In this situation, the robot is required to navigate
between the objects in order to properly scan the image (tag) face of the top box; however, there
is very little space for the robot to do so. The objects are close enough that using the AMCL and
navigation algorithms to move the robot proves difficult in this region due to the dead zones
around objects that the robot cannot navigate to (i.e., the locations are deemed unreachable by
the program). Thus, the robot struggles to get close to the object and to capture a good enough
image for the vision system. While testing in the practice environment, this portion of the
navigation required the most time, approximately 30 seconds to 1 minute. The team attempted to
resolve the issue by changing parameters such as the offset of the robot from the face of objects,
but they still experienced the same issue. With more time, the team would have looked into
alternative solutions to make this section more efficient. If this type of situation occurs in the
trials for the contest, the robot may struggle during navigation, costing the team valuable time.

Figure 11: Region (red box) causing navigational issues in practice map

Another aspect that should be considered for future iterations of this project is in regards to how
the team solved the traveling salesman problem. The team implemented a brute force algorithm
to find all the possible Hamilton circuits of the 10 objects and then to select the most optimal
path. Although this technique is guaranteed to find an optimal solution, the disadvantage is that it
is inefficient due to the computation time required to solve it, especially as the number of objects
increases. With 10 objects, the program takes 3-5 seconds to complete the computation; this is
minimal in comparison with the maximum time limit of 8 minutes. However, if one more object
was added (11 objects in total), the computation time would be 30-50 seconds, requiring a
significant portion of the time limit. If a second object was added (12 objects in total), the
computation time could vary from 6 to 10 minutes. At this point, the brute force method would
be too time consuming. If the team’s algorithm were to be used in a scenario that included more
than 10 objects, the code would no longer be feasible. Instead, another method would have to be
implemented in that scenario, such as the Nearest Neighbour Method. This technique sacrifices
efficiency, in terms of path planning, with computation speed as it only needs to check the
optimal path locally.

16

Lastly, the image processing system employed in the program could be modified for future
considerations. The current algorithm utilizes the fact that the system is in a simulated and
relatively unchanging environment (meaning that the walls, ground, sky, etc. are not modified
from the practice world to the trial world). The team’s image processing works by removing
certain aspects of the captured image (walls, sky, etc.) to make identification easier and quicker.
If the environment were to be changed, either another simulated environment or the real world,
these aspects of the pre-processing phase would not work as they are specifically designed for
the contest’s environment. Thus, the vision system code would have to be modified significantly
for different environments, including those that may slightly shift the colour of the walls/sky.

17

5.0 Contribution Table
Contributions noted by value: 1 - small amount, 3 - majority, blank for none.

Table 1: Contribution Table

Section Savo Bajic Maximilian Glidden Catherine Kucaba

1.0 3

2.0 2 3

3.1 3

3.2 3 2

4.0 3

Robot Code 3 2 1

18

6.0 Appendices

Appendix A: Tag Preprocessing
The tag is preprocessed using the following steps, with an example of the intermediate result
after each step shown as a figure below.

1. Load in original reference image
2. Resize to 5:4 aspect ratio (500 x 400 pixels is used in code)
3. Apply Gaussian blur
4. Store result for future reference

Figure 12: An original tag reference image provided to robot

19

Figure 13: Image resized to 5:4 aspect ratio (500 by 400 pixels)

Figure 14: Gaussian blur applied. Image is stored.

20

Appendix B: Scene Processing
The scene is preprocessed using the following steps, with an example of the intermediate result
after each step shown as a figure below.

1. Load in image from scene (640 x 480 pixels)
2. Crop image to remove bottom portion (lowest 60 rows of pixels)
3. Remove (blank) colour pixels
4. Convert to grayscale (omitted from figures due to it appearing the same as the previous

step’s result)
5. Remove (blank) the sky

Once processed the image has its features numerically determined for matching to the stored
tags. The result of a successful match is included. This shows the bounding box for the dominant
tag spotted in the scene as well as an overlay of the matching features detected and connected
between the reference and scene images.

Figure 15: Original image of scene from Kinect sensor (640 pixels wide by 480 tall)

21

Figure 16: Cropped image to remove bottom portion (640 x 420 pixels)

Figure 17: Coloured pixels are blanked (removed) by setting them to pure black. The image is
functionally grayscaled at this point before converting to grayscale data formatting.

22

Figure 18: Sky is blanked (removed) from the image

Figure 19: Demonstration of a match. Reference image on the left, processed scene on the right.
Green bounding box is put to outline the dominant match, matching features between the two

images are linked by thin coloured lines.

23

Appendix C: Example Output File
Below are the contents of an example output file from the robot. These results are from a
successful run through the practice map for this contest.

Tag ID (0 for no ID) - Coordinates (x (m), y (m), yaw (rad)) - new or
duplicate (dup)

Tag 14 - (0.18, 0.59, -3.033) - new
Tag 15 - (-2.00, -2.14, 2.347) - new
Tag 8 - (0.38, -2.74, 2.331) - new
Tag 11 - (1.31, -4.41, 1.617) - new
Tag 10 - (1.53, -3.57, 1.636) - new
Tag 5 - (3.19, -3.76, 2.330) - new
Tag 5 - (3.35, -1.85, 2.397) - dup
Tag 0 - (2.75, -0.90, 3.060) - new
Tag 2 - (1.94, -1.41, 0.788) - new
Tag 11 - (2.34, -1.38, 2.347) - dup

24

Appendix D: Notable vision tests
Below are some examples of notable test files used to verify the vision system’s capabilities and
the results of using them.

Figure 20: A tag that is partially visible and has other tags visible in their entirety in the
background (the bounding box is extrapolated out of the scene image and thus overlaps the

reference image on the left)

Figure 21: A tag that is not facing the robot and is only partially visible still manages to be
properly identified

25

Figure 22: Two tags are adjacent and occupy a similar amount of visual area.

This figure above was primarily used as a test by the team to ensure the robot would only mark
down a match if it was clearly dominant (largest one, therefore closest) in the image. Since there
are two similarly dominant tags in this image, the system should have not determined a
“winning” match. However, since the system decided that there was a tag present, this means the
system failed this case in this instance.

Figure 23: A test to see how the robot handles rotated tags in the scene. This test was not
originally planned, however this image was recorded when a simulation had a glitch that rotated

this box and was kept going forward.

26

Figure 24: Testing a feature rich tag to a feature rich scene. This was a stress test used to ensure
the vision processing code would not potentially run out of memory in such cases where there is

a lot of data present.

Figure 25: A basic test with a feature poor tag to a feature poor scene. Used to ensure the system
did not favour tags that simply had more features that although had a smaller portion of their

features match, resulting in a larger absolute count of matches.

27

Figure 26: Testing to ensure a feature poor tag is selected over other tags present in the
background.

28

Appendix E: contest2.cpp
#include <boxes.h>

#include <navigation.h>

#include <robot_pose.h>

#include <imagePipeline.h>

#include <cmath>

#include <algorithm>

#include "fileWrite.h"

#include <time.h>

#include "tests.h"

#include "pathPlanning.h"

const int timeLimit = 8 * 60; // Time limit in seconds

int main(int argc, char** argv) {

// Monitor time elapsed

time_t startTime = time(NULL);

float secondsElapsed = 0;

// Initialize box coordinates and templates

Boxes boxes;

if(!boxes.load_coords() || !boxes.load_templates()) {

ROS_FATAL("Could not load coords or templates");

return -1;

}

else {

ROS_INFO("Box coordinates loaded successfully:");

std::cout << "Box #\tx (m)\ty (m)\tyaw (rad)\n"; // Header

// Output data for each box nicely

for(int i = 0; i < boxes.coords.size(); ++i) {

char buffer[100];

sprintf(buffer, "%3d\t%5.2f\t%5.2f\t%6.3f\n", i,

boxes.coords[i][0], boxes.coords[i][1],

boxes.coords[i][2]);

std::cout << buffer;

}

}

29

// Setup ROS.

ros::init(argc, argv, "contest2");

ros::NodeHandle n;

// Robot pose object + subscriber.

RobotPose robotPose(0,0,0);

ros::Subscriber amclSub = n.subscribe("/amcl_pose", 1,

&RobotPose::poseCallback, &robotPose);

// Initialize image object and subscriber.

ImagePipeline imagePipeline(n, boxes);

// Spin a couple times to sync properly

for (int i = 0; i < 3; i++) {

ros::Duration(0.1).sleep();

ros::spinOnce();

}

// Record starting position

std::vector<float> startPosition(3);

startPosition[0] = robotPose.x;

startPosition[1] = robotPose.y;

startPosition[2] = robotPose.phi;

ROS_INFO("Starting position:\n\tx: %5.2f\ty: %5.2f\tyaw: %5.2f",

startPosition[0], startPosition[1], startPosition[3]);

// Initialize path planner

pathPlanning pathPlanned(n, boxes, startPosition, true); // Path data

// Variable to record identification of boxes

std::vector<int> boxIDs(boxes.coords.size()); // Recoding IDs of each

box

int currentStop = 0;

while(ros::ok() && (secondsElapsed < timeLimit)) {

ros::spinOnce();

// ===

// Tests for features, these will only be executed once

// Configured in "tests.h"

30

#ifdef FILE_WRITE_TEST

fileWriteTest(boxes, bestRoute, false);

return 0;

#endif

#ifdef VISION_SAMPLES_TEST

// Leave search term for vision as "" for all test cases

visionSystemTest("", boxes, imagePipeline, true);

return 0;

#endif

#ifdef MOTION_TEST

navigationSystemTest(pathPlanned);

return 0;

#endif

// ===

// Actual loop code

int boxNumber = pathPlanned.idealOrder[currentStop]; // Stores

current box index

// ===

// Motion code

// Start by checking if it is time to return to start and terminate

if (currentStop == pathPlanned.idealOrder.size()) {

ROS_WARN("Done all stops, returning to start.");

bool atEnd = pathPlanned.goToCoords(pathPlanned.startCoord);

// Check if it has successfully returned to the start

if (atEnd) ROS_WARN("Reached end in %.1f seconds\n",

secondsElapsed);

else ROS_ERROR("FAILED TO REACH END! (%.1f seconds

elapsed).\n\tTerminating anyways.\n", secondsElapsed);

break; // Break out of while loop (to terminate)

}

// Inform us what step is started and target

ROS_INFO("Starting step %d, target is box %d.", currentStop + 1,

boxNumber);

31

// Do normal motion otherwise

bool atSpotToScan = pathPlanned.goToStop(currentStop);

if (atSpotToScan) ROS_INFO("Reached stop %d (box %d)", currentStop

+ 1, boxNumber);

else ROS_ERROR("Failed to reach stop %d (box %d)", currentStop + 1,

boxNumber);

if (atSpotToScan) {

// Perhaps some code to try and align bot with target even if

unreachable

}

// ===

// Vision code

// Scan regardless of if we succcessfully reached destination or

not

// since we might be lucky and be able to see it from where we

stand

ros::spinOnce(); // Update video feed after moving

// Check if there is something present

int ID = imagePipeline.getTemplateID(boxes, false);

if (ID >= 0) boxIDs[currentStop] = ID; // Good scan (error-free)

else {

// Handle error... or don't

}

// ===

// Record results

// Every step, so in the event of interruption our progress isn't

lost

writeLog(boxes, pathPlanned.idealOrder, boxIDs);

// ===

// Increment to next step

currentStop++;

std::cout << "\n\n"; // Make a break in terminal between stops

32

// Sleep and record elapsed time

ros::Duration(0.1).sleep();

secondsElapsed = time(NULL) - startTime;

}

// ===

// Handle proper closure

if (secondsElapsed >= timeLimit) {

// Time's up handle proper closure

ROS_WARN("TIME'S UP! (%.1f of %d seconds)\n RECORDING OUTPUT AND

TERMINATING.\n", secondsElapsed, timeLimit);

}

writeLog(boxes, pathPlanned.idealOrder, boxIDs, true); // Write results

before closing (with terminal output)

ROS_FATAL("Ending now. Goodbye.\n");

return 0;

}

33

Appendix F: boxes.h
#pragma once

#include <opencv2/highgui/highgui.hpp>

#include <tf/transform_datatypes.h>

#include <tf/transform_broadcaster.h>

#include <vector>

class Boxes {

public:

std::vector<cv::Mat> templates;

std::vector<std::vector<float> > coords;

public:

bool load_coords();

bool load_templates();

};

Appendix G: boxes.cpp
#include <ros/package.h>

#include <boxes.h>

#include <tf/transform_datatypes.h>

bool Boxes::load_coords() {

std::string filePath = ros::package::getPath("mie443_contest2") +

std::string("/boxes_database/coords.xml");

cv::FileStorage fs(filePath, cv::FileStorage::READ);

if(fs.isOpened()) {

cv::FileNode node;

cv::FileNodeIterator it, end;

std::vector<float> coordVec;

std::string coords_xml[10] = {"coordinate1", "coordinate2",

"coordinate3", "coordinate4",

"coordinate5", "coordinate6",

"coordinate7", "coordinate8",

"coordinate9", "coordinate10"};

for(int i = 0; i < 10; ++i) {

node = fs[coords_xml[i]];

34

if(node.type() != cv::FileNode::SEQ) {

std::cout << "XML ERROR: Data in " << coords_xml[i]

<< " is improperly formatted - check input.xml"

<< std::endl;

} else {

it = node.begin();

end = node.end();

coordVec = std::vector<float>();

for(int j = 0; it != end; ++it, ++j) {

coordVec.push_back((float)*it);

}

tf::Quaternion q(coordVec[3], coordVec[4], coordVec[5],

coordVec[6]);

tf::Matrix3x3 m(q);

double roll, pitch, yaw;

m.getRPY(roll, pitch, yaw);

auto boxCoords = std::vector<float>();

boxCoords.push_back(coordVec[0]);

boxCoords.push_back(coordVec[1]);

boxCoords.push_back(yaw);

if(coordVec.size() == 7) {

coords.push_back(boxCoords);

} else {

std::cout << "XML ERROR: Data in " << coords_xml[i]

<< " is improperly formatted - check

input.xml" << std::endl;

}

}

}

if(coords.size() == 0) {

std::cout << "XML ERROR: Coordinate data is improperly

formatted - check input.xml"

<< std::endl;

return false;

}

} else {

std::cout << "Could not open XML - check FilePath in " << filePath

<< std::endl;

return false;

35

}

return true;

}

bool Boxes::load_templates() {

std::string filePath = ros::package::getPath("mie443_contest2") +

std::string("/boxes_database/templates.xml");

cv::FileStorage fs(filePath, cv::FileStorage::READ);

if(fs.isOpened()) {

cv::FileNode node = fs["templates"];;

cv::FileNodeIterator it, end;

if(!(node.type() == cv::FileNode::SEQ || node.type() ==

cv::FileNode::STRING)) {

std::cout << "XML ERROR: Image data is improperly formatted in

" << filePath

<< std::endl;

return false;

}

it = node.begin();

end = node.end();

std::string imagepath;

for(; it != end; ++it){

imagepath = ros::package::getPath("mie443_contest2") +

std::string("/boxes_database/") +

std::string(*it);

templates.push_back(cv::imread(imagepath,

CV_LOAD_IMAGE_GRAYSCALE));

}

} else {

std::cout << "XML ERROR: Could not open " << filePath << std::endl;

return false;

}

return true;

}

36

Appendix H: fileWrite.h
#pragma once

#include <fstream>

#include "boxes.h"

#include <vector>

const std::string logfile = "/Documents/team22results.txt"; // Where to

record (relative to home)

// Function to write results to a file

void writeLog(Boxes boxList, std::vector<int> movePlan, std::vector<int>

boxIDs, bool printInfo = false);

Appendix I: fileWrite.cpp
#include "fileWrite.h"

void writeLog(Boxes boxList, std::vector<int> movePlan, std::vector<int>

boxIDs, bool printInfo) {

// Opens/creates log file (clears the contents if there was one prior

to this)

char * homeDir = std::getenv("HOME"); // Get home directory for user

std::string fileLocation = homeDir + logfile; // Combines with the

prefered file path

std::ofstream outputFile;

outputFile.open(fileLocation.c_str(), std::ios_base::out |

std::ios_base::trunc);

if (outputFile.is_open()) {

std::string headerText = "Tag ID (0 for no ID) - Coordinates (x

(m), y (m), yaw (rad)) - new or duplicate (dup)\n\n";

outputFile << headerText;

if (printInfo) {

ROS_INFO("Results of our run.\n");

37

std::cout << headerText;

}

// ==

// Read box IDs and their coordinates into the file

// Records if a template has already appeared (plus one for blank

(at index 0))

bool alreadyTagged[boxList.templates.size() + 1];

for (int i = 0; i < (boxList.templates.size() + 1); i++)

alreadyTagged[i] = false;

// Go through each entry and record things

for (int i = 0; i < boxIDs.size(); i++) {

// Record tag ID for that stop

char tagText[10];

sprintf(tagText,"Tag %2d", boxIDs[i]);

// Record duplicate status

char dupText[7];

if (alreadyTagged[boxIDs[i]] == true) {

sprintf(dupText, "dup");

}

else {

sprintf(dupText, "new");

alreadyTagged[boxIDs[i]] = true; // Mark down it has

already been listed

}

// Record coordinates for the stop from move list

std::vector<float> curCoords = boxList.coords[movePlan[i]];

char coordText[25];

sprintf(coordText, "(%5.2f, %5.2f, %6.3f)", curCoords[0],

curCoords[1], curCoords[2]);

// Output the entry

char outputBuffer[150];

sprintf(outputBuffer, "%s - %s - %s\n", tagText, coordText,

dupText);

38

outputFile << outputBuffer; // Write to file

if (printInfo) std::cout << outputBuffer;

}

std::cout << std::endl; // Add space after results

outputFile.close(); // Must close file once complete

ROS_INFO_COND(printInfo, "File with results written to:\n\n%s\n",

fileLocation.c_str());

}

else {

// File failed to open

ROS_FATAL("Unable to prepare output file at:\n\n%s\n",

fileLocation.c_str());

}

}

39

Appendix J: imagePipeline.h
#pragma once

#include <image_transport/image_transport.h>

#include <std_msgs/String.h>

#include <opencv2/core.hpp>

#include <cv.h>

#include <cv_bridge/cv_bridge.h>

#include <boxes.h>

#include "opencv2/features2d.hpp"

#include "opencv2/xfeatures2d.hpp"

#include "opencv2/highgui.hpp"

#include <stdio.h>

#include <iostream>

#include "opencv2/calib3d.hpp"

#include "opencv2/imgproc.hpp"

class ImagePipeline {

private:

cv::Mat img;

bool isValid;

image_transport::Subscriber sub;

uint8_t skyVal = 178; // RGB value of the skybox

const uint8_t removeVal = 0; // Value used to overwrite pixels we

don't care for

// Checks if the lines plotted by the four corners don't intersect

bool checkTangledBox(std::vector<cv::Point2f> corners);

// See if the test point lies above the line between points A and B

bool checkAbove(cv::Point2f test, cv::Point2f a, cv::Point2f b);

// Used to produce an output of the reference image in the scene

based on existing matches and points

cv::Mat drawSceneMatches(cv::Mat &scene, cv::Mat &refImage,

std::vector<cv::DMatch> &matches,

std::vector<cv::KeyPoint> &keyPointsRef,

std::vector<cv::KeyPoint> &keyPointsScene);

40

// Searches for an image in a scene

void searchInScene(cv::Mat &refImage, cv::Mat &descriptorsScene,

std::vector<cv::KeyPoint> &keypointsObject,

std::vector<cv::DMatch> &goodMatches,

cv::Ptr<cv::xfeatures2d::SURF> &detector);

void tagPreprocess(cv::Mat &tag); // Preprocess image for tagging

(result saved to image)

public:

float reqConfRatio = 1.20; // Ratio between max and second to

make a conclusion

float reqConfMinimum = 0.07; // Minimum threshold to be considered

conclusive

float reqMinArea = 0.0; // Minimum area needed to be considered

float areaConfidenceFactor = 0.00005; // Factor used to multiply

area by before multiplying that to confidence

// Confidence = (matching features / reference's features) * area *

areaFactor

int minHessian = 350;

ImagePipeline(ros::NodeHandle& n, Boxes& boxes);

void imageCallback(const sensor_msgs::ImageConstPtr& msg);

int getTemplateID(Boxes& boxes, bool showInternals = true);

void loadImage(std::string fileLocation, bool printMessage = true);

// Used for testing by loading in our own images

};

41

Appendix K: imagePipeline.cpp
#include <imagePipeline.h>

#define IMAGE_TYPE sensor_msgs::image_encodings::BGR8

#define IMAGE_TOPIC "camera/rgb/image_raw" //

kinect:"camera/rgb/image_raw" webcam:"camera/image"

ImagePipeline::ImagePipeline(ros::NodeHandle& n, Boxes &boxes) {

image_transport::ImageTransport it(n);

sub = it.subscribe(IMAGE_TOPIC, 1, &ImagePipeline::imageCallback,

this);

isValid = false;

// Preprocress all tags and store in boxes so this only has to happen

once

for (int i = 0; i < boxes.templates.size(); i++) {

tagPreprocess(boxes.templates[i]);

}

}

void ImagePipeline::tagPreprocess(cv::Mat &tag) {

cv::resize(tag,tag, cv::Size(500,400)); // Resize to

roughly match aspect ratio on boxes

cv::GaussianBlur(tag, tag, cv::Size(3, 3), 0, 0); // Add blur to

aid feature matching

//cv::imshow("Tag as used", tagImage); // Show image used in search

}

void ImagePipeline::imageCallback(const sensor_msgs::ImageConstPtr& msg) {

try {

if(isValid) img.release();

img = (cv_bridge::toCvShare(msg, IMAGE_TYPE)->image).clone();

isValid = true;

} catch (cv_bridge::Exception& e) {

ROS_ERROR("Could not convert from %s to %s!",

msg->encoding.c_str(), IMAGE_TYPE.c_str());

isValid = false;

}

42

}

int ImagePipeline::getTemplateID(Boxes& boxes, bool showInternals) {

int determinedId = -1; // Default to error

if(!isValid) {

ROS_ERROR("INVALID IMAGE!");

return determinedId;

} else if(img.empty() || img.rows <= 0 || img.cols <= 0) {

ROS_ERROR("VALID IMAGE, BUT STILL A PROBLEM EXISTS!");

std::cout << "\timg.empty():" << img.empty() << std::endl;

std::cout << "\timg.rows:" << img.rows << std::endl;

std::cout << "\timg.cols:" << img.cols << std::endl;

return determinedId;

}

// ==

// Preprocesing of incoming image

img = img(cv::Rect(0,0,640,420)); // Crop out the constant lip of the

rover at the bottom

// Black out coloured pixels (currently only walls)

uint8_t* pixelPtr = (uint8_t*)img.data;

int cn = img.channels();

uint8_t bgrPixel[3];

for(int i = 0; i < img.rows; i++) {

for(int j = 0; j < img.cols; j++) {

bgrPixel[0] = pixelPtr[i*img.cols*cn + j*cn + 0]; // B

bgrPixel[1] = pixelPtr[i*img.cols*cn + j*cn + 1]; // G

bgrPixel[2] = pixelPtr[i*img.cols*cn + j*cn + 2]; // R

// Check if its greyscale (R=B=G), blank them if they aren't

if ((bgrPixel[0] == bgrPixel[1]) && (bgrPixel[0] ==

bgrPixel[2])) continue;

else {

pixelPtr[i*img.cols*cn + j*cn + 0] = removeVal;

pixelPtr[i*img.cols*cn + j*cn + 1] = removeVal;

pixelPtr[i*img.cols*cn + j*cn + 2] = removeVal;

}

43

}

}

// Convert image from RGB to greyscale space

// This should reduce memory usage and computation time

cv::cvtColor(img, img, cv::COLOR_RGBA2GRAY, 0);

// Remove sky

// The sky is a uniform colour (in our sim 178, 178, 178) and always

starts from the top until it is

// interrupted by an object, none of which have pixels of that value

along the top

// skyVal is defined in the header, but it can be dynamically set

before this is desired.

pixelPtr = (uint8_t*)img.data; // Update the pointer before this loop

for (int j = 0; j < img.cols; j++) {

for (int i = 0; i < img.rows; i++) {

// Go column by column from top to bottom until no longer in

the sky

// Check if its greyscale (R=B=G), blank them if they aren't

if (pixelPtr[i*img.cols + j] != skyVal) break; // Hit an

object, go to next column

else {

pixelPtr[i*img.cols + j] = removeVal;

}

}

}

//cv::imshow("Processed view. Press any key to continue.", img); //

Show result of preprocessing

// ==

// Setup scan of image

using namespace cv;

using namespace cv::xfeatures2d;

// Setup the SURF detector for features in images and associated data

Ptr<SURF> detector = SURF::create(minHessian); // Defined in header

44

std::vector<KeyPoint> keyPointsObject, keyPointsScene;

Mat descriptorsScene;

// Determine features for the scene before looping through options

detector->detectAndCompute(img, noArray(), keyPointsScene,

descriptorsScene);

if (showInternals) {

printf("\tScene has %d keypoints\n", (int) keyPointsScene.size());

}

// Find the ID and confidence levels of the two highest rated

candidates

float maxConfidence = 0.0, secondConfidence = 0.0;

uint8_t maxID = 0;

Mat bestTag; // Stores the best matched reference tag for display

purposes

// ==

// Loop through all possible tags

for (int tagID = 0; tagID < boxes.templates.size(); tagID++) {

// Load reference to tag from boxes (just to help simplfy the code

that follows)

Mat &tagImage = boxes.templates[tagID];

// See what portion of features from the reference are matched in

the scene

std::vector<DMatch> goodMatches;

searchInScene(tagImage, descriptorsScene, keyPointsObject,

goodMatches, detector);

float confidence = (float)goodMatches.size() /

(float)keyPointsObject.size();

// ==

// Investigate futher if initial confidence is good

float area = 0; // Area object takes up in scene (pixels)

if (confidence > reqConfMinimum) {

// Localize the object

std::vector<Point2f> refPoints;

std::vector<Point2f> scenePoints;

45

for(int i = 0; i < goodMatches.size(); i++) {

// Get the keypoints from the good matches

refPoints.push_back(keyPointsObject[goodMatches[i].queryIdx].pt);

scenePoints.push_back(keyPointsScene[goodMatches[i].trainIdx].pt);

}

// Determine transformation matrix of reference to scene pixels

Mat H = findHomography(refPoints, scenePoints, RANSAC);

// Check if there is a possible transform

if (H.empty()) {

// Failed to find a transform from reference to scene

ROS_WARN("Unable to transform perspective using reference

%d.", tagID + 1);

confidence = 0; // It's a bad match

}

else {

// Tranform from refence image to scene is possible

// Get the corners from the reference image

std::vector<Point2f> cornersInReference(4);

cornersInReference[0] = Point2f(0, 0);

cornersInReference[1] = Point2f((float)tagImage.cols, 0);

cornersInReference[2] = Point2f((float)tagImage.cols,

(float)tagImage.rows);

cornersInReference[3] = Point2f(0, (float)tagImage.rows);

std::vector<Point2f> corInScene(4);

// Apply transform to reference corners to transform into

scene bounds

cv::perspectiveTransform(cornersInReference, corInScene,

H);

// Check if the corners are not "tangled" before

calculating area (forming a "bow" shape (invalid))

if (checkTangledBox(corInScene) == false) {

// Calculate area of the region

46

// (1/2) * [(x1y2 + x2y3 + x3y4 + x4y1) - (x2y1 + x3y2

+ x4y3 + x1y4)]

area = corInScene[0].x * corInScene[1].y +

corInScene[1].x * corInScene[2].y +

corInScene[2].x * corInScene[3].y + corInScene[3].x

* corInScene[0].y;

area = area - (corInScene[1].x * corInScene[0].y +

corInScene[2].x * corInScene[1].y +

corInScene[3].x * corInScene[2].y + corInScene[0].x

* corInScene[3].y);

area = area / 2;

}

}

}

// ==

// Look to record this match if it's worthy

if (area <= reqMinArea) confidence = 0; // Nullify confidence if it

isn't present

else confidence = confidence * area * areaConfidenceFactor; // Add

area to confidence

// Area is added to prefer objects that are closer to rover but

might have some of their features out of

// frame, resulting in a lower "confidence" than a fully visible,

but futher object in the background

if (showInternals) {

printf("Template %2d - Confidence %6.2f%% - KP %4d / %4d - Area

%6.0f\n",

tagID + 1, confidence * 100.0, (int)goodMatches.size(),

(int) keyPointsObject.size(), area);

}

// See how this compares to previous cases

if (confidence > maxConfidence) {

// New best

secondConfidence = maxConfidence;

maxConfidence = confidence;

47

// Record values needed outside the loop

maxID = tagID;

bestTag = tagImage.clone();

}

else if (confidence > secondConfidence) {

// Record second place confidence for ratio comparison later

secondConfidence = confidence;

}

}

// ==

// Process the results of the scan

determinedId = 0; // Default (inconclusive scan, but at least no

error!)

if (maxConfidence < reqConfMinimum) {

// If there is no satisfactory option

ROS_INFO("Failed to find a match.");

}

else if ((maxConfidence > reqConfMinimum) && ((maxConfidence /

secondConfidence) > reqConfRatio)) {

determinedId = maxID + 1; // Add one to match file names and to

allow 0 to be used as a fail code

ROS_INFO("Image contains %d, %.2f%% (%.2f) confidence",

determinedId,

maxConfidence * 100.0, (maxConfidence / secondConfidence));

if (showInternals) {

// Redo winning search

std::vector<DMatch> goodMatches;

searchInScene(bestTag, descriptorsScene, keyPointsObject,

goodMatches, detector);

// Show resulting matches

Mat imgOfMatches = ImagePipeline::drawSceneMatches(img,

bestTag, goodMatches, keyPointsObject, keyPointsScene);

imshow("Selected match", imgOfMatches);

48

cv::waitKey(250); // Wait until any key is pressed or 250ms

pass

}

}

return determinedId;

}

void ImagePipeline::searchInScene(cv::Mat &tagImage, cv::Mat

&descriptorsScene, std::vector<cv::KeyPoint> &keyPointsObject,

std::vector<cv::DMatch> &goodMatches,

cv::Ptr<cv::xfeatures2d::SURF> &detector) {

using namespace cv;

Mat descriptors_object;

// Detect markers for the reference to find in the scene

detector->detectAndCompute(tagImage, noArray(), keyPointsObject,

descriptors_object);

// Matching descriptor vectors with a FLANN based matcher

// Since SURF is a floating-point descriptor NORM_L2 is used

Ptr<DescriptorMatcher> matcher =

DescriptorMatcher::create(DescriptorMatcher::FLANNBASED);

std::vector< std::vector<DMatch> > knn_matches;

matcher->knnMatch(descriptors_object, descriptorsScene, knn_matches, 2

);

// Filter matches using the Lowe's ratio test

const float ratio_thresh = 0.75;

for (size_t i = 0; i < knn_matches.size(); i++) {

if (knn_matches[i][0].distance < ratio_thresh *

knn_matches[i][1].distance) {

goodMatches.push_back(knn_matches[i][0]);

}

}

}

void ImagePipeline::loadImage(std::string fileLocation, bool printMessage)

{

49

// Replace image in pipeline with something else

img = cv::imread(fileLocation, 1);

isValid = true;

if (printMessage) ROS_INFO("Image loaded from into video

feed.\n\t\"%s\"", fileLocation.c_str());

}

cv::Mat ImagePipeline::drawSceneMatches(cv::Mat &scene, cv::Mat &tagImage,

std::vector<cv::DMatch> &matches,

std::vector<cv::KeyPoint> &keyPointsRef, std::vector<cv::KeyPoint>

&keyPointsScene){

using namespace cv;

// Draw matches

Mat imageOfMatches; // Image with matches illustrated

drawMatches(tagImage, keyPointsRef, scene, keyPointsScene, matches,

imageOfMatches, Scalar::all(-1),

Scalar::all(-1), std::vector<char>(),

DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);

// Localize the object

std::vector<Point2f> refPoints;

std::vector<Point2f> scenePoints;

for(size_t i = 0; i < matches.size(); i++) {

// Get the keypoints from the good matches

refPoints.push_back(keyPointsRef[matches[i].queryIdx].pt);

scenePoints.push_back(keyPointsScene[matches[i].trainIdx].pt);

}

Mat H = findHomography(refPoints, scenePoints, RANSAC);

if (!H.empty()) {

// Can preform transform from reference to scene

float refImageCol = (float)tagImage.cols;

// Get the corners from the reference image (the object to be

"detected")

std::vector<Point2f> cornersInReference(4);

50

cornersInReference[0] = Point2f(0, 0);

cornersInReference[1] = Point2f(refImageCol, 0);

cornersInReference[2] = Point2f(refImageCol, (float)tagImage.rows

);

cornersInReference[3] = Point2f(0, (float)tagImage.rows);

std::vector<Point2f> corInScene(4);

cv::perspectiveTransform(cornersInReference, corInScene, H);

// Draw lines between the corners of the spotted object (reference)

in the scene

cv::line(imageOfMatches, corInScene[0] + Point2f(refImageCol, 0),

corInScene[1] + Point2f(refImageCol, 0), Scalar(0, 255, 0),

4);

cv::line(imageOfMatches, corInScene[1] + Point2f(refImageCol, 0),

corInScene[2] + Point2f(refImageCol, 0), Scalar(0, 255,

0), 4);

cv::line(imageOfMatches, corInScene[2] + Point2f(refImageCol, 0),

corInScene[3] + Point2f(refImageCol, 0), Scalar(0, 255,

0), 4);

cv::line(imageOfMatches, corInScene[3] + Point2f(refImageCol, 0),

corInScene[0] + Point2f(refImageCol, 0), Scalar(0, 255,

0), 4);

}

else {

ROS_WARN("Can't draw matches. Corners cannot be transformed.");

}

return imageOfMatches;

}

bool ImagePipeline::checkTangledBox(std::vector<cv::Point2f> corners) {

// Check that line between 1 and 4 does not cross 23

bool tempA = checkAbove(corners[0],corners[1],corners[2]);

bool tempB = checkAbove(corners[3],corners[1],corners[2]);

bool result = tempA == tempB; // Store if both points fall on the same

side (not tangled)

// Check that line 12 does not cross 34

51

tempA = checkAbove(corners[0],corners[3],corners[2]);

tempB = checkAbove(corners[1],corners[3],corners[2]);

result = result && (tempA == tempB); // Update result to ensure no sets

of lines intersect

return !result; // Return true if the system IS tangled

}

bool ImagePipeline::checkAbove(cv::Point2f test, cv::Point2f a,

cv::Point2f b) {

// Define line between a and b

float gradient = (a.y - b.y) / (a.x - b.x);

// Linearly extrapolate line between a and b to test point

float dx = test.x - a.x;

float estimateY = a.y + dx * gradient;

// Return if the point lies above the line or not

return test.y > estimateY;

}

52

Appendix L: navigation.h
#pragma once

#include <vector>

class Navigation {

public:

static bool moveToGoal(float xGoal, float yGoal, float phiGoal);

static bool moveToGoal(std::vector<float> goal); // Overloaded to

simplify our code which uses vectors to store coordinates

};

Appendix M: navigation.cpp
#include <navigation.h>

#include <actionlib/client/simple_action_client.h>

#include <move_base_msgs/MoveBaseAction.h>

#include <tf/transform_datatypes.h>

bool Navigation::moveToGoal(float xGoal, float yGoal, float phiGoal){

// Set up and wait for actionClient.

actionlib::SimpleActionClient<move_base_msgs::MoveBaseAction>

ac("move_base", true);

while(!ac.waitForServer(ros::Duration(5.0))){

ROS_INFO("Waiting for the move_base action server to come up");

}

// Set goal.

geometry_msgs::Quaternion phi =

tf::createQuaternionMsgFromYaw(phiGoal);

move_base_msgs::MoveBaseGoal goal;

goal.target_pose.header.frame_id = "map";

goal.target_pose.header.stamp = ros::Time::now();

goal.target_pose.pose.position.x = xGoal;

goal.target_pose.pose.position.y = yGoal;

goal.target_pose.pose.position.z = 0.0;

goal.target_pose.pose.orientation.x = 0.0;

goal.target_pose.pose.orientation.y = 0.0;

goal.target_pose.pose.orientation.z = phi.z;

goal.target_pose.pose.orientation.w = phi.w;

53

ROS_INFO("Sending goal location ...");

// Send goal and wait for response.

ac.sendGoal(goal);

ac.waitForResult();

if(ac.getState() == actionlib::SimpleClientGoalState::SUCCEEDED){

ROS_INFO("You have reached the destination");

return true;

} else {

ROS_INFO("The robot failed to reach the destination");

return false;

}

}

bool Navigation::moveToGoal(std::vector<float> goal) {

// Overload to simplify our commands

return Navigation::moveToGoal(goal[0], goal[1], goal[2]);

}

54

Appendix N: pathPlanning.h
#pragma once

#include <vector>

#include "boxes.h"

#include <robot_pose.h>

#include <ros/ros.h>

#include <tf/transform_datatypes.h>

#include <nav_msgs/GetPlan.h>

#include <std_srvs/Empty.h>

#include "navigation.h"

// define marcos used solely for constants

#define RAD2DEG(rad) ((rad) * 180. / M_PI)

#define DEG2RAD(deg) ((deg) * M_PI / 180.)

class pathPlanning {

private:

float deg2rad(float angle);

float rad2deg(float angle);

// Setting up points constants when approaching boxes

const float offsetAngleLimit = DEG2RAD(50.0);

const float offsetAngleStep = DEG2RAD(10.0);

const float offsetDistStart = 0.35; // Any less the 0.35and the

rover gets stuck

const float offsetDistStep = 0.05;

const float offsetDistLimit = 0.5;

// Internal copies/references so they don't need to contantly be

passed in

ros::NodeHandle nh;

std::vector<std::vector<float> > boxCoordList;

double loopCost(double **adjMatrix, std::vector<int> movePlan);

std::vector<int> findOptimalPath(bool printResult); // Returns best

route as box IDs to take

55

public:

std::vector<float> startCoord;

std::vector<int> idealOrder; // Holds the order to take through the

world

std::vector<std::vector<float> > stopCoords; // Stores the

coordinates of each stop corrisponding to a box

pathPlanning(ros::NodeHandle& n, Boxes boxesIn, std::vector<float>

startPosition, bool printStuff = false);

bool clearCostMap();

std::vector<float> faceBoxPoint(int boxIndex);

bool checkPossible(std::vector<float> goalCoord, bool printStuff =

false);

bool goToCoords(std::vector<float> target);

bool goToStop(int index);

};

56

Appendix O: pathPlanning.cpp
#include "pathPlanning.h"

float pathPlanning::deg2rad(float angle) {

return (angle * M_PI) / 180.0;

}

float pathPlanning::rad2deg(float angle) {

return (angle * 180.0) / M_PI;

}

bool pathPlanning::goToStop(int index) {

return goToCoords(stopCoords[idealOrder[index]]);

}

bool pathPlanning::goToCoords(std::vector<float> target) {

bool gotThere = Navigation::moveToGoal(target);

// Handle initial failure

if (!gotThere) {

ROS_INFO("Initial attempt failed, clearing cost table.");

clearCostMap(); // Clear cost map and reattempt motion

gotThere = Navigation::moveToGoal(target);

// Absolute failure

if (!gotThere) ROS_ERROR("Failed to reach point (%5.2f, %5.2f,

%6.3f)", target[0], target[1], target[2]);

}

return gotThere;

}

pathPlanning::pathPlanning(ros::NodeHandle& n, Boxes boxesIn,

std::vector<float> startPosition, bool printStuff) {

nh = n;

startCoord = startPosition;

boxCoordList = boxesIn.coords;

57

//Initialize list

for (int i = 0; i < boxCoordList.size(); i++) {

stopCoords.push_back(faceBoxPoint(i));

}

idealOrder = findOptimalPath(printStuff);

}

std::vector<float> pathPlanning::faceBoxPoint(int boxIndex) {

std::vector<float> output(3,0);

std::vector<float> boxCoords = boxCoordList[boxIndex];

// Generate points starting from middle and then going outwards up to a

limit

// Also gradually increase distance as needed

for (float offAngle = 0; offAngle <= offsetAngleLimit; offAngle =

offAngle + offsetAngleStep) {

for (float offDist = offsetDistStart; offDist <= offsetDistLimit;

offDist = offDist + offsetDistStep) {

// Adjust position coordinates based off box face

output[0] = boxCoords[0] + offDist * cosf(boxCoords[2] +

offAngle);

output[1] = boxCoords[1] + offDist * sinf(boxCoords[2] +

offAngle);

// Set angle to face the point

output[2] = boxCoords[2] + offAngle;

if (output[2] > 0) output[2] = output[2] - M_PI;

else output[2] = output[2] + M_PI;

// Adjust increment for next iteration

if (offAngle > 0) offAngle = 0.0 - offAngle; // Flip from

positive to negative

else offAngle = (0.0 - offAngle) + offsetAngleStep; // Flip

and add increment (once positive again)

// Check if the plotted point is valid

58

bool validPoint = checkPossible(output);

if (validPoint) return output; // Return first possible point

}

}

// Alert user to failure

ROS_ERROR("No valid location to offset to.\n\tPoint: (%5.2f, %5.2f.

%5.1f)\n\tOffset Dist.: %5.2f m\tOffset Angle: %5.2f",

boxCoords[0], boxCoords[1], boxCoords[2], offsetDistLimit,

rad2deg(offsetAngleLimit));

return boxCoords; // Return the input if failed to find a point

}

bool pathPlanning::clearCostMap() {

// Clear cost map using the service

std_srvs::Empty srv;

ros::ServiceClient clear =

nh.serviceClient<std_srvs::Empty>("move_base/clear_costmaps");

bool callExecuted = clear.call(srv);

if (callExecuted) ROS_INFO("Cleared cost map");

return callExecuted;

}

bool pathPlanning::checkPossible(std::vector<float> goalCoord, bool

printStuff) {

bool callExecuted, validPlan;

nav_msgs::GetPlan srv;

// Set start position

geometry_msgs::PoseStamped start;

geometry_msgs::Quaternion phi =

tf::createQuaternionMsgFromYaw(startCoord[2]);

start.header.frame_id = "map";

start.pose.position.x = startCoord[0];

59

start.pose.position.y = startCoord[1];

start.pose.position.z = 0;

start.pose.orientation.x = 0;

start.pose.orientation.y = 0;

start.pose.orientation.z = phi.z;

start.pose.orientation.w = phi.w;

// Set goal position

geometry_msgs::PoseStamped goal;

phi = tf::createQuaternionMsgFromYaw(goalCoord[2]);

goal.header.frame_id = "map";

goal.pose.position.x = goalCoord[0];

goal.pose.position.y = goalCoord[1];

goal.pose.position.z = 0;

goal.pose.orientation.x = 0;

goal.pose.orientation.y = 0;

goal.pose.orientation.z = phi.z;

goal.pose.orientation.w = phi.w;

// Set up the service and call it

ros::ServiceClient checkPath =

nh.serviceClient<nav_msgs::GetPlan>("move_base/NavfnROS/make_plan");

srv.request.start = start;

srv.request.goal = goal;

srv.request.tolerance = 0.0;

callExecuted = checkPath.call(srv);

// Output print statments

if(!callExecuted){

ROS_ERROR("Call to check plan NOT sent");

}

if(srv.response.plan.poses.size() > 0){

validPlan = true;

ROS_INFO_COND(printStuff, "Successful plan.\n\tStart: (%5.2f,

%5.2f. %6.3f)\n\tGoal: (%5.2f, %5.2f. %6.3f)",

startCoord[0], startCoord[1], startCoord[2], goalCoord[0],

goalCoord[1], goalCoord[2]);

}

60

else{

validPlan = false;

ROS_INFO_COND(printStuff, "Unsuccessful plan.\n\tStart: (%5.2f,

%5.2f. %6.3f)\n\tGoal: (%5.2f, %5.2f. %6.3f)",

startCoord[0], startCoord[1], startCoord[2], goalCoord[0],

goalCoord[1], goalCoord[2]);

}

return validPlan;

}

double pathPlanning::loopCost(double **adjMatrix, std::vector<int>

movePlan) {

// Note, adjMatrix has been passed in by reference so any changes to it

will

// be reflected in the variable used when calling this

double cost = 0;

for(int i = 1; i < movePlan.size(); ++i) {

cost += (adjMatrix[movePlan[i]])[movePlan[i-1]];

}

cost += adjMatrix[movePlan[movePlan.size() - 1]][movePlan[0]];

return cost;

}

std::vector<int> pathPlanning::findOptimalPath(bool printResult) {

ROS_INFO("Determining optimal path using brute force method.");

// Create an adjacency matrix

int tour_points = stopCoords.size() + 1; // Number of points to take

double adjMatrix[tour_points][tour_points]; // Stores cost between any

two spots

// Start is 0, 1 onwards are boxes 1 onwards

for(int i = 0; i < tour_points; ++i) {

for(int j = 0; j < tour_points; ++j) {

if(i == j){

adjMatrix[i][j] = 0;

}

else if(i == 0) {

double dx = startCoord[0] - stopCoords[j-1][0];

61

double dy = startCoord[1] - stopCoords[j-1][1];

adjMatrix[i][j] = sqrt(dx * dx + dy * dy);

}

else if(j == 0) {

double dx = startCoord[0] - stopCoords[i-1][0];

double dy = startCoord[1] - stopCoords[i-1][1];

adjMatrix[i][j] = sqrt(dx * dx + dy * dy);

}

else {

double dx = stopCoords[i-1][0] - stopCoords[j-1][0];

double dy = stopCoords[i-1][1] - stopCoords[j-1][1];

adjMatrix[i][j] = sqrt(dx * dx + dy * dy);

}

}

}

// Initialize vector as a set of numbers from 0 to the number of tour

points

std::vector<int> movePlan(tour_points);

for(int i = 0; i < tour_points; ++i) {

movePlan[i] = i;

}

// Prepare pointer to pass adjMatrix

double *temp[tour_points];

for(int i = 0; i < tour_points; ++i) temp[i] = adjMatrix[i];

double bestScore = loopCost(temp, movePlan);

std::vector<int> bestRoute = movePlan;

while(std::next_permutation(movePlan.begin() + 1, movePlan.end())) {

double s = loopCost(temp, movePlan);

if(s < bestScore) {

bestScore = s;

bestRoute = movePlan;

}

}

// Edit route to be better fed into navigation

for (int i = 1; i <= tour_points; i++) {

62

bestRoute[i] = bestRoute[i] - 1; // Fix box indexing to start

from 0 and not 1

bestRoute[i-1] = bestRoute[i]; // Move all points up one

(removing the start point from the list)

}

bestRoute.pop_back(); // Remove the redundant end point

if(printResult) {

ROS_INFO("Best path determined for %d given boxes.\nEstimated

travel of %.2f m with",(int) bestRoute.size(), bestScore);

char buffer[60];

for (int i = 0; i < bestRoute.size(); i++) {

sprintf(buffer, "\tStop %2d - Box %2d\t(%5.2f, %5.2f,

%6.3f)\n", i + 1, bestRoute[i],

stopCoords[bestRoute[i]][0], stopCoords[bestRoute[i]][1],

stopCoords[bestRoute[i]][2]);

std::cout << buffer;

}

// Tack on reminder that we return to start

sprintf(buffer, "\tReturn to start \t(%5.2f, %5.2f, %6.3f)\n\n",

startCoord[0], startCoord[1], startCoord[2]);

std::cout << buffer;

}

return bestRoute;

}

63

Appendix P: robot_pose.h
#pragma once

#include <geometry_msgs/PoseWithCovarianceStamped.h>

class RobotPose {

public:

float x;

float y;

float phi;

public:

RobotPose(float x, float y, float phi);

void poseCallback(const geometry_msgs::PoseWithCovarianceStamped&

msg);

};

Appendix Q: robot_pose.cpp
#include <robot_pose.h>

#include <tf/transform_datatypes.h>

RobotPose::RobotPose(float x, float y, float phi) {

this->x = x;

this->y = y;

this->phi = phi;

}

void RobotPose::poseCallback(const

geometry_msgs::PoseWithCovarianceStamped& msg) {

phi = tf::getYaw(msg.pose.pose.orientation);

x = msg.pose.pose.position.x;

y = msg.pose.pose.position.y;

}

64

Appendix R: tests.h
#pragma once

#include "fileWrite.h"

#include "imagePipeline.h"

#include <dirent.h> // Used for reading in the test files

#include "pathPlanning.h"

#include "navigation.h"

// "#define"s used to run tests. Comment out any unwanted tests

// These are used over standard "if"s since these will omit the code from

the compilation properly

//#define FILE_WRITE_TEST // Execute file output test

//#define VISION_SAMPLES_TEST // Run test code for vision (go through

test files)

//#define MOTION_TEST // Test motion functions / systems

const std::string testPhotoFolder =

"/catkin_ws/src/mie443_contest2/testpics/"; // Relative to user home

void fileWriteTest(Boxes boxes, std::vector<int> movePlan, bool

printStuff);

void visionSystemTest(std::string searchTerm, Boxes boxes, ImagePipeline

&imagePipeline, bool printInnerWorks);

void navigationSystemTest(pathPlanning pathPlanners);

65

Appendix S: tests.cpp
#include "tests.h"

void navigationSystemTest(pathPlanning pathPlanner) {

ROS_WARN("\n\nMOTION TEST \n(will terminate once complete)\n");

std::vector<float> testPoint(3, 0); // Initialize with 0s

/* Random point test

srand(time(NULL)); // Seed the random number generator with the current

time

// Generate a goal it can reach within the 6x6 maze

do {

testPoint[0] = -3.0 + (float)(rand() % 600) / 100.0;

testPoint[1] = -3.0 + (float)(rand() % 600) / 100.0;

} while(pathPlanner.checkPossible(testPoint) == false);

Navigation::moveToGoal(testPoint);

pathPlanner.clearCostMap();

*/

// Go to all boxes

for (int i = 0; i < pathPlanner.stopCoords.size(); i ++) {

ROS_INFO("\n\tGOING TO STOP %d", i);

testPoint = pathPlanner.stopCoords[i];

bool gotThere = pathPlanner.goToCoords(testPoint);

if (gotThere) ROS_INFO("Reached box %d", i);

else ROS_ERROR("Failed to reach box %d", i);

ros::Duration(5).sleep(); // Simulate scan and so we can register

it stopping

}

bool gotThere = pathPlanner.goToCoords(pathPlanner.startCoord);

if (!gotThere) ROS_ERROR("Failed to return to starting point.");

66

}

void fileWriteTest(Boxes boxes, std::vector<int> movePlan, bool

printStuff) {

ROS_WARN("\n\nRUNNING FILE OUTPUT TEST\n(will terminate once

complete)\n");

std::vector<int> boxIDs(boxes.coords.size()); // Dummy box IDs

for (int i = 0; i < boxes.coords.size(); i++) {

boxIDs[i] = i / 2; // i/2 to get duplicates

}

writeLog(boxes, movePlan, boxIDs);

}

void visionSystemTest(std::string searchTerm, Boxes boxes, ImagePipeline

&imagePipeline, bool printInnerWorks) {

ROS_WARN("\n\nRUNNING VISION TEST \nSearch term: \"%s\".\n(will

terminate once complete)\n", searchTerm.c_str());

// Find folder on user

char * homeDir = std::getenv("HOME"); // Get home directory for user

const std::string folderLocation = homeDir + testPhotoFolder;

ROS_INFO("Test photo location used:\n%s\n", folderLocation.c_str());

// Load in test files

std::vector<std::string> fileNames;

DIR *dr;

struct dirent *en;

dr = opendir(folderLocation.c_str()); // Open directory

if (dr) {

while ((en = readdir(dr)) != NULL) {

std::string temp = en->d_name; // Grab file names

// Add files that end in PNG and contain search term

if (temp.find(".png") != std::string::npos) {

67

if (temp.find(searchTerm) != std::string::npos) {

fileNames.push_back(temp);

}

}

}

closedir(dr); // Close directory

}

// Check if empty

if (fileNames.empty()) {

ROS_FATAL("\n\nNO TEST FILES FOUND!\nCheck for valid search string

or folder location.\n");

return;

}

std::sort(fileNames.begin(), fileNames.end()); // Sort files

alphabetically

int result[fileNames.size()]; // Result array

// Go through each test file to ID

for (int i = 0; i < fileNames.size(); i++) {

std::string testFile = folderLocation + fileNames[i];

imagePipeline.loadImage(testFile);

result[i] = imagePipeline.getTemplateID(boxes, printInnerWorks);

}

// Print result summary

printf("\nResults of image analysis, ID# and file name.\n");

for (int i = 0; i < fileNames.size(); i++) {

printf("ID %2d: %s\n", result[i], fileNames[i].c_str());

}

}

68

Appendix T: webcam_publisher.cpp
#include <ros/ros.h>

#include <image_transport/image_transport.h>

#include <opencv2/highgui/highgui.hpp>

#include <cv_bridge/cv_bridge.h>

#include <sstream> // for converting the command line parameter to integer

int main(int argc, char** argv)

{

// Check if video source has been passed as a parameter

if(argv[1] == NULL){

std::cout << "****No Camera Selected****" << std::endl << "Input camera

number to use, ie. 0 for default laptop camera." << std::endl;

return 1;

}

ros::init(argc, argv, "image_publisher");

ros::NodeHandle nh;

image_transport::ImageTransport it(nh);

image_transport::Publisher pub = it.advertise("camera/image", 1);

// Convert the passed as command line parameter index for the video

device to an integer

std::istringstream video_sourceCmd(argv[1]);

int video_source;

// Check if it is indeed a number

if(!(video_sourceCmd >> video_source)) return 1;

cv::VideoCapture cap(video_source);

// Check if video device can be opened with the given index

if(!cap.isOpened()) return 1;

cv::Mat frame;

sensor_msgs::ImagePtr msg;

ros::Rate loop_rate(30);

while (nh.ok()) {

cap >> frame;

// Check if grabbed frame is actually full with some content

if(!frame.empty()) {

69

msg = cv_bridge::CvImage(std_msgs::Header(), "bgr8",

frame).toImageMsg();

pub.publish(msg);

cv::waitKey(1);

}

ros::spinOnce();

loop_rate.sleep();

}

}

70

7.0 References
[1] MIE443H1S: Contest 2: Finding Objects of Interest in an Environment, University of

Toronto, Toronto, ON, 2021, pp. 1-3.

71

