

Final Report
MIE444 Project

Catherine Kucaba - 1003278026
Maximilian Glidden - 1002277396

Savo Bajic - 1003051485

12/09/2020

1

Executive Summary

The goal of this project was to design and program a robotic system that is
required to autonomously localize itself in a known maze layout and navigate it
regardless of starting position or orientation, as it carries out a specific set of tasks
whilst avoiding collisions and obstacles. The maze was walled and had a randomized
checkered pattern on the floor. Within the maze, the robot was tasked with locating and
picking up a small load (i.e., a wooden block) in a loading zone (LZ) and delivering it to
a desired drop zone (DZ or Point B). It was required to perform these tasks within eight
minutes. A pre-built robot was provided by the teaching team for this stage of the
project.

The team successfully completed this task with the provided rover, perfectly, in

five and a half minutes. These results can be found in Week 12 Milestone 3 - Trial 1 -
Afternoon/recording_6”, starting at time 56:55. This was the first successful completion
of the full task by any team during the trial runs. At the time of submission, the rover
could reliably localise, navigate to and from the target loading zone, and retrieve and
deliver the payload. Algorithms for the control of the rover were developed and
integrated in MATLAB. Obstacle avoidance and lane-keeping were achieved using an
algorithm with adaptive step size, which sped up the rover’s movement considerably, a
major challenge the team faced in the early development milestones. Localization was
achieved largely using the ultrasonic sensors to detect the distance to adjacent walls.
The results of this and previous scans would generate a confidence level for a certain
location. Once a location reaches a certain confidence proportional to the remainder of
the maze, it would consider itself localized and plot a path to the desired target, either
the LZ or B, using an A* algorithm. It would try to follow the path, verifying it’s progress
until the destination was reached. In the LZ the rover would rotate and scan for the
block, centering itself before approaching and grabbing it. It would then realign and
relocalize itself in the maze before going to the DZ and dropping the block.

The overall performance of the rover was consistently impressive with minimal

collisions, fast traversal of the maze environment, and reliable localization. The team
felt there was room for further improvement with the accuracy of the block detection
technique, which could be further refined. The speed of the rover in the maze was
another target for continuous improvement, and with further tuning, even faster traversal
times are achievable.

This project gave the team a better understanding of the design and integration

of mechatronic systems, and an appreciation for the challenges inherent in mobile
robotics.

2

Detailed Rover Control Strategy
The rover was controlled using a MATLAB script executed on a computer that

communicated with the rover over Bluetooth connection. The rover would execute
commands in the order it received them in (first in, first out) one by one as they were
completed. The team largely relied on simulations and limited real testing of the rover
due to COVID-19.

Obstacle Avoidance

Obstacle avoidance forms the basis for the rover’s movement through the maze,
preventing collisions with the walls, which allows for localization and navigation. Initially,
the team’s obstacle avoidance routines made up the majority of the main operating
loop. As the team progressed through the project milestones, it became more difficult to
integrate obstacle avoidance at a high level without increasing the overall complexity of
the rover algorithms. The team made the decision to integrate the bulk of the algorithm
for obstacle avoidance directly into forward movement commands, which simplified
overall integration. This approach was successful, because the robot risked collision
only during movements and rotations. With proper choice of acceptable clearances to
surrounding walls, the risk of the rover colliding during a rotation could be mitigated. The
obstacle avoidance algorithm served to both reduce risk of collision when moving
forward, and achieve the clearances necessary for turning in the maze. The flow of the
obstacle avoidance algorithm is provided below.

Figure 1: Forward Movement - Obstacle Avoidance Algorithm Flow

3

Upon startup, the rover initializes a minimum acceptable clearance taken from
the edge of the robot footprint to the wall in any direction, as well as a maximum and
minimum step size, and a lane width. This minimum clearance is used throughout the
navigation process to guide obstacle avoidance. At the beginning of each operating
loop, the rover samples each of the ultrasonic sensors sequentially (akin to a
low-resolution lidar) and subtracts the fixed distance between each ultrasonic sensor
and the corresponding edge of the rover footprint from the raw sensor output. This gives
an approximate clearance value between the robot and the wall in each direction. After
performing localization and navigation processing, the last action performed before
completing the loop is forward movement. A step size for forward motion is determined
adaptively as:

tepSize , forwardClearance 2" s = K * √forwardClearance > 1
lse stepSize 4"e =

where K is a user-set gain factor (default of 1.5 after real-world tuning). This step

size is compared against the remaining clearance in the forward direction, accounting
for the minimum allowable clearance with the wall. The minimum of these values is
taken as the step size. This strategy for determining step size allows the rover to move
in larger steps when there is ample space in front of it. After determining a step size, the
avoidance algorithm checks the clearances from the left and right ultrasonic sensors.
The algorithm tries to keep the rover centred on a predefined “lane” in the middle of the
left and right walls. If the rover is closer than the minimum acceptable clearance on
either side, it takes evasive action to place the centroid of the rover approximately 6”
from the nearest wall (nominally centered on the lane). An angle of rotation is
determined as:

rcsin()θ = a stepSize
6−(R+clearance)

Where ​R ​is the radius of the rover footprint. The numerator of the above
expression can be thought of as the horizontal offset between the nominal centre of the
lane and the rover centroid. Direction of rotation is determined by which sensor (left or
right) detects a clearance less than the minimum threshold. Rotating the rover by θ, and
advancing by the previously determined step size should place the rover’s centroid
roughly in the middle of the lane, after which the rover re-aligns itself with the wall of the
maze using the two right-side ultrasonic sensors. The rover attempts a similar centering
technique when it detects that it has left the lane, by averaging the difference between
the left and right clearance, and then generating an angle. This centering process,
combined with the adaptive step size, ensured the rover had adequate space to rotate
when necessary. Rover rotation for the purpose of navigating the maze was kept

4

separate from the obstacle avoidance algorithm, and instead integrated into the
localization and navigation modules.

The obstacle avoidance algorithm was developed primarily in the provided

SimMeR​ Matlab simulator. The differences between real-world and simulator operation
presented a major challenge for the team to overcome. One part of this challenge was
the level of uncertainty in the accuracy of sensor readings and movements in
simulation. Prior to the first real-world trial, the team lacked information on the accuracy
of rover movement and rotation. The simulator allowed for random noise to be added to
sensor readings and rover movements to account for real-world errors. The default
noise ranges for sensing and movement were quite large, ranging from 2-5%. With such
large potential for accumulated errors in the simulator, the team initially designed the
obstacle avoidance algorithm to move in small, fixed steps. Wall avoidance was
achieved with constant sensor scans, large minimum acceptable clearances, and
aggressive fixed-angle corrections. While this approach was fast and robust in
simulator, it failed spectacularly in initial real-world trials. The aggressive avoidance
strategy caused the rover to ‘pinball’ back and forth between the walls of the maze,
over-correcting and moving too close to the opposite wall instead of moving straight
ahead. The real-world errors in rover movement and sensing were on the whole much
lower than the simulator. This contributed to a larger issue, the rover’s speed in the
maze. Compared to the speed at which commands could be issued to the rover in
simulator, a major bottleneck in real-world performance was the time taken to issue
commands to the rover over bluetooth from the controlling PC. With repeated calls to
individual sensors, there was significant downtime between each iteration of the
operating loop (~20 seconds), after which the rover would make a 4 inch step. In initial
trials using this algorithm, the rover failed to travel more than a third of the required
distance.

In redesigning the obstacle avoidance algorithm after initial real-world trials, a

key realisation was that the real-world errors in rover movement were significantly lower
than previously assumed. The team re-tuned the simulator with this in mind, reducing
the amount of simulated noise by an order of magnitude. This also drove a complete
rethink of the avoidance and movement strategy. Instead of moving in small fixed steps,
the team implemented adaptive step sizes, which allowed the rover to move larger
distances per step when it had the room to do so and move more precisely in corners
and other critical areas. Wall avoidance was also changed to be less aggressive,
moving the rover forward at a less drastic angle and centering it in the lane using the
adaptive step size. This eliminated the issues with ‘pinballing’ present in initial trials.
Finally, the algorithm was changed to reduce the number of commands sent to the rover
per step. This resulted in a rover that moved forward quickly with less downtime, and

5

with more accuracy; achieving the required distance for the first project milestone.
Further tuning of the step size and avoidance algorithms for later milestones further
improved the rover’s traversal speed.

A new challenge that arose with the improved avoidance algorithm was the effect

of maze edge cases on the centering of the rover. In select locations in the maze where
left and right walls were not equidistant from the centre path (the loading zone, 4-way
intersection), attempting to use the centering algorithm would risk collision as the rover
attempted to centre to a lane that did not actually exist. To mitigate this issue, the team
added logic to check for these cases prior to a centering action. When such cases were
detected, the rover avoided centering at the current step, and instead centered once the
location causing the edge case was cleared.

Figure 2: Visualization of Collision due to Edge Case When Centering

Localization and Navigation Strategy
In the rover’s hierarchy of needs, localization is the level above obstacle

avoidance. Above localization is navigation, as successful navigation relies on proper
localization. These were calculated using 12” by 12” squares to describe the maze, and
assuming the rover would be roughly centered in the center of any such square when
the calculation is executed.

Figure 3: Maze Layout (Top left square is (1, 1), bottom right is (4, 8)) (A heading of 1

points upwards and increases going around counter-clockwise)

6

Above is a view of the maze the rover had to navigate, broken down into the grid
of 12”x12” squares (also referred to as cells or nodes). In the top left is the lift zone (LZ)
where the rover must pick up the block from, the squares marked with “B”s are potential
drop zones where the rover may need to deposit the block (the specific one is selected
prior to the trial).

Localization
Localization was determined using the likelihood of the rover being in a given

position based on sensor readings after travelling through the maze. Once the position
with the highest likelihood surpassed twice the likelihood of the second position the
rover was declared localized. The use of a relative threshold between the highest
squares was selected because the coarseness of the grid used in calculations can not
tolerate multiple similarly probable locations and be reasonably accurate to reality. If two
adjacent nodes share a similar and high value (e.g. 30% likelihood), there are two
possible squares the rover could be in, each with different paths to take to the
destination. This is not an issue with finer localization grids (such as 3”x3” squares)
employed by other groups where adjacent nodes can share similarly high confidences
and the path finding would still be valid regardless of this small error in describing the
rover’s true position. Below are two figures showing the path found for two adjacent
nodes to the “B” square using different grid sizes. With the finer grid (3”x3”) these two
nodes would both tell the rover to move right, however with the 12”x12” grid, they
disagree.

Figure 4: Demonstration of path finding from adjacent nodes using different grid sizes

There were three sources that were combined to determine the likelihood of the

rover being at any given position in the maze:
● The walls bordering the square the rover is currently in
● The distance to the first wall in every direction of the rover
● A shifted copy of the previous confidences across the maze based on the

movement of the rover

7

All of these were initially based exclusively using the ultrasonic sensors used for
obstacle avoidance. There are two reasons for this; first one being that it sped up the
rover since the sensors only had to be polled once since the same values could be used
for both avoidance and localization (the reason for localizing before moving), and
secondly the team did not trust the compass given then troubles they had using it to
accomplish milestone 1 using it. The compass was eventually reintroduced for
milestone 3 but in a limited role, simply serving to determine the rover’s approximate
heading in the maze (e.g. “up” or “right”) after discussion with other groups convinced
the team with their success using this method.

To determine the likely position of the rover using the adjacent walls the rover
uses the ultrasonic sensor readings and records on which sides it detects a wall closer
than 6” away, 0 for no, 1 for yes. These are recorded in a string going around the rover
starting in the front going counter clockwise looking down on the robot. So if there is a
wall in front of the rover and to the right “1001” is recorded. This string is then compared
to a predefined set of values for each square to see where it matches. The advantage of
using a string like this is that the heading of the rover can be inferred by seeing at which
rotation of the string (shifting the letters to the right and looping around), it matches the
constant array for the maze (defined assuming the rover is facing up when the strings
match.

Figure 5: Wall constants through the maze

Using the example of “1001” (wall in front and on the right) there is a match at (1,

4) so the rover would mark that as a potential site. Rotating the string once results in
“1100” which has a match at (1, 1) implying the rover may be there, but facing left.
Further rotations would reveal other locations at other orientations.

This method of searching was useful because it allowed the heading of the rover
to be estimated even without the compass which was vital during the phase the team
did not use it. However there are a few cases where the heading would be ambiguous,
in the case where there is a wall on the left and right (but not front or behind) of the

8

rover such as at (4, 2) there are two possible headings, at (2, 6) the heading is
completely indeterminant.

The other method used to estimate locations was using the distance (or
clearance to walls) for the rover in each direction. This was essentially a development
from the wall estimate method. The primary difference between the two is that for
clearance testing the distance to the next wall in each direction is divided by 12 and
rounded to get a number squares between the rover and that wall. Otherwise the
process for determining location and heading is identical between the two using string
rotation.

Figure 6: Clearance constants for the maze

The benefit of clearance checking over wall checking is that there are fewer

similar cells the rover can think it’s in at once. This means that if the sensors work
perfectly and the rover is properly aligned, clearance checking should be much more
precise and localize faster. Another benefit is that the headings are less ambiguous
using the clearance method as there are no squares which have multiple possible
headings for a given search string.

The final contribution to localization confidence was the previous confidences
translated based on the heading of the rover’s last move. Before the compass was
used, these headings would vary square to square as there wasn’t a definite absolute
heading to the maze. The heading estimates from the other two methods would be
combined prioritizing the clearance based headings over wall based headings where
possible and the probability would be moved accordingly e.g. “left” for the cells where a
heading was determined.

This method of translating confidences was very complicated as there were
many different cases to consider, for example if there were multiple squares that could
potentially translate into a single cell (e.g. (2,5), (3, 6), (2,7), and (1, 6) can all translate
to (2, 6)). This method also only worked for nodes where the rover believed it was
previously, which made correcting errors difficult. The solution to address this heading

9

issue and reduce the complexity of the code was to reimplement the compass to
determine the rover’s absolute heading to the maze and translate all probabilities using
that heading. This allowed all confidences to be translated and with much simpler code.

With all three factors calculated, they would get combined through multiplication

into a final result that would then be scanned for the highest confidence levels. Below is
an example result of the rover in (4, 3) in the simulator and the results. (Blue is low
confidence, yellow is maximum confidence).

Figure 7: Location confidences (left) based on rover position in simulator (right). The

clearance method singles out fewer possible nodes for the rover than the wall method

If the rover was not localized, it would travel in a direction and check its location

again until localized. It would first move forward if unobstructed, or else it would then
resort to turning left, then right, and, in the worst case, backwards.

One challenge the team faced when going from the simulator to reality was that

the ultrasonic sensors were unreliable over large distances. This negatively affected the
clearance based localization especially along the bottom between (4, 1) and (4, 6). The
team determined the only way to prevent these erroneous readings from severely
impacting their localization (as it did in milestone 2) was to decrease the effect of
clearance localization on the overall result. This was achieved by taking the square root
of it before combining it with the other estimates.

Pathfinding
Once the rover has localized itself, pathfinding occurs using the A* algorithm.

Depending on the stage a different target is used. When heading to the drop zone, that
coordinate is used as the target. When heading to the LZ, the control algorithm will
calculate the route to (2, 1) and (1, 2) to see which resulting route is shorter for the
rover. The reason the rover needed to set one of these as the destination instead of (1,

10

1) which would always yield the shortest route is because the rover needs to stop on
entry to the LZ to scan for the block as soon as possible.

A* Pathfinding was selected as it allows the shortest path to be found from any
arbitrary point to any other arbitrary point which allows for greater flexibility and less
chance for human error than hard coding. The essence of A* pathfinding is that it scans
the closest “available” node to the end point. The initial available nodes are the ones
adjacent to the starting point. Once scanned a node is moved from the “available” list to
the “scanned” list and it’s adjacent nodes are added to the available list. This process
continues until the end point is reached. The function would then return the list of nodes
the path would take, this was fed into another set of functions to generate a set of
functions to generate a list of turns for the rover to take at each node to follow the path.

Pathfinding was one of the few systems that was tested outside of trials or the

simulators provided. The team tested it as a separate script that they entered the start
and end locations within the maze and then the script would output the node and turn
list as well as a figure illustrating the path taken (figure feature was removed when
integrated with rover code). The results were compared to hand calculated paths to
verify the success of the function.

Figure 8: Example figure of path found by the algorithm from (4, 8) to (1, 1) in testing

With the node list and turn list the rover would navigate one square at a time

using the obstacle avoidance code. When it would finish arriving at a new square it
would verify if the localization agreed that it was in the expected square. If it was, the
rover would execute the turn as described in the turn list and repeat. If not, the rover
would discard the lists, relocalize and find a new path to the target point. This did not
occur frequently in reality but it did occur several times in the simulator that the rover
travelled incorrectly or got a sensor reading that misguided it.

11

Block Delivery Strategy
The block delivery strategy was limited to the act of grabbing or dropping the

block. The strategy for grabbing the block was to enter the lift zone, face away from the
center of the lift zone, then begin a gradual scan across the lift zone for the block. The
block would be detected if the reading for the front obstacle avoidance ultrasonic sensor
had a reading exceeding the reading of the obstacle detection ultrasonic sensor that
was situated beneath it in the structure.

Figure 9: The rover in the simulator beginning its sweep for the block

Once detected the rover would continue its sweep until it failed to detect the

block again. It would then aim to center itself on the block by turning to the midway mark
between these points and approach the block but leaving enough room to open the
grabber without striking the block. The rover would recenter itself on the block, open the
grabber, approach the block (hopefully getting it partially up the ramp), and closing the
grabber on the block.

At this point the rover would most likely not be aligned with either maze axis. To
realign itself to the maze the rover could use the compass or ultrasonic sensors.
However the team decided that the faster way would be to make use of the high
rotational precision of the rover. This was exploited by keeping track of the cumulative
rotations the rover performed in the process of grabbing the block and then sending a
single command to reverse this cumulative rotation. This was very successful at roughly
returning the rover back to its heading as it entered the lift zone, at which point only one
or two iterations of sensor alignment would be needed to align to the maze.

With the block secured, the rover would then relocalize as it would at the start of
the run, however once localized it would aim to the drop zone set by the user. Once it
verifies it is in the drop zone, the rover would ensure there was enough clearance to
open the grabber in front of the rover, open it, then retreat backwards a few inches to
drop the block and declare it had done so.

12

One hardware issue the team faced that they did not expect from the rover was
that when the grabber was open, the block detecting ultrasonic sensor would pick it up
and constantly return 8 inches and not the actual distance in front of it. This was
addressed by adjusting the order of instructions to scan before opening the gripper.

Another issue the team faced was mistaking the edge of the obstacles at (2, 3) or

(3, 2) as blocks since one ultrasonic would not detect the obstacle while the other would
result in a difference that would be mistaken for the block. This was not observed in any
simulation but did occur in a trial for milestone 3, fortunately for the team the second
subsequent checks worked as intended and the rover recovered the block on the
second sweep. The team did not attempt to address this as the run was successful
overall.

Figure 10: Visualization of ultrasonic sensors on corners

Integration
The overall flow of our control algorithm for the rover is an initial alignment loop

for the rover to set itself aligned to one of the axes of the maze. Once aligned, the rover
enters the main navigation loop where it will behave differently based on the “state” the
rover is in. There are three types of states: localizing, path following, and grabbing the
block. This loop will bring the rover to the lift zone (LZ), grab the block, and then go to
the drop zone (DZ). Once in the drop zone the rover will exit the navigation loop and
execute the block drop off procedure. This flow is summarized in a flowchart (figure 11).

Although there are three types of states, there are actually five unique states

present (detailed in table 1). This is because the rover repeats localization and path
finding after it grabs the block in the LZ to go to the DZ, other than the difference in
destination the behavior of these states is identical. The use of a series “states” within
the same loop is advantageous for our algorithm as it allows the rover to easily switch
between states to recover from localization errors by changing a single variable. This
also carries the advantage of reducing the amount of code needed since states can
share code.

13

Figure 11: Rover flow diagram

Table 1: Summary of rover navigation states

14

State Meaning

0 Localizing prior to picking up the block

1 Path following to lift zone

2 Relocalizing after grabbing the block

3 Path following to drop zone

4 Grabbing block

Final Results
After countless trials and practice runs, the team’s rover managed to successfully

complete its tasks in the maze in a time of 5 minutes and 20 seconds. These tasks
included localizing itself in the maze, navigating to the loading zone, detecting and
picking up the load (i.e., a block), and dropping off the load at a programmed drop
location, all whilst avoiding collisions and contact with obstacles. This achievement can
be seen in the video “Week 12 Milestone 3 - Trial 1 - Afternoon/recording_6”, starting at
time 56:55. The breakdown of the robot’s performance per milestone is discussed
below.

Obstacle Avoidance
For Milestone 1, the robot was required to navigate 20 feet (squares) in the maze

in 8 minutes, while also avoiding obstacles, such as collisions with the walls. Initially, the
team struggled to develop an algorithm for obstacle avoidance that was both reliable
and fast. In the practice run after trial 1, the robot managed to travel 7 feet; however, it
did so very slowly and inefficiently. In an attempt to increase the speed, the compass
readings were utilized. This resulted in more collisions and the rover only travelling 4
feet.

During trial 3, the team’s rover successfully navigated 13-14 feet in the maze in 8

minutes without collisions. This can be viewed in the video “Week 10 Milestone 1 - Trial
3 Runs/recording_1” starting at time 02:15:26. This is the furthest distance the rover
travelled for Milestone 1 trials and practice runs, in addition to having no collisions, as
all or almost all previous runs had at least one collision. Although the criterion of 20 feet
was not met, the team received a perfect score for this milestone. Future iterations of
this rover could be used to increase the speed to meet the 20 feet requirement, as well
as creating a more robust obstacle avoidance code so that increasing speed does not
increase collisions.

Localization
For Milestone 2, the robot was required, within 8 minutes, to localize from a

random starting position, navigate to the loading zone, and then travel to the drop off
location, providing confirmations at each stage. At this point, the rover was moving
significantly farther and faster than in Milestone 1. In each run, the robot would localize
itself quickly (within a few steps), but also lose localization quickly, especially in the 6
foot section of the maze. This was due to the initial method used for localization, in
addition to collisions causing issues.

15

Trial 2 was the best performance for the team, and can be seen in the video
“Week 11 Milestone 2 Trial 2/recording_1”, starting at 02:19:45. In this trial, the robot
localized fast, within 1 or 2 steps, and it was better overall at localizing and staying
localized than the previous runs. Unfortunately, the rover collided with the wall, causing
it to lose localization. It managed to relocalize and successfully navigate to the loading
zone. After leaving the loading zone, the rover was unable to navigate to the drop off
location due to an error in the pathfinding code. This error was resolved for the next
Milestone. Therefore, for Milestone 2, the robot only achieved two out of the three
requirements.

Pick-up and Delivery of the Load
For pick-up and delivery in Milestone 3, the robot was required to drive to the

load with confirmation, pick it up, place it outside the loading zone, and deliver it within 5
minutes. Initially, during practice runs, the robot would navigate to the loading zone, but
would not properly detect the block. When it performed a sweep of the loading zone,
corners of the area would be detected instead of the block. In one run, the rover
detected the corner as the block and executed the code to grab it. It then navigated to
the drop off location and would have successfully dropped off the block if it had it. This
issue appeared to be caused by the block ultrasonic sensor differing from the front
ultrasonic sensor when facing a wall. During trial 1, the team’s rover successfully
detected, picked up, and dropped off the block in a time of 2 minutes and 50 seconds,
well within the limit. In addition, the robot did not experience collisions. This can be
observed in the video “Week 12 Milestone 3 - Trial 1 - Afternoon/recording_6”, starting
at time 56:55.

Integration
All of the requirements above for obstacle avoidance, localization, and block

pick-up and delivery were needed to be performed by the robot in Milestone 3. This
includes the robot localizing from a random starting position, arriving at the loading zone
and detecting the load, picking it up, and delivering it to the drop off location, with
confirmation being provided at each stage. This is in addition to being completed in 8
minutes and the robot not contacting obstacles throughout the run. The team’s rover
successfully completed the tasks in the maze in a time of 5 minutes and 20 seconds.
This can be seen in the video “Week 12 Milestone 3 - Trial 1 - Afternoon/recording_6”,
starting at 56:55. The robot localized itself in 2 steps and managed to stay localized as it
moved to the loading zone. When it arrived, it performed a sweep of the area and
detected the block, aligning itself perfectly to grab it. Once the block was picked up, the
robot moved in the loading zone to relocalize itself and then navigated to the drop zone,
where it successfully delivered the block. During the entire run, the robot had no
collisions.

16

Discussion

Reviewing the hardware design of the rover, there is one feature that was
immeasurably helpful to preparing the control algorithm: the drive system. Using stepper
motors for a differential drive led to motion that was accurate, precise, and repeatable.
This allowed the team to be less concerned about veering off course with large steps or
that adjustments would not be executed correctly when needed. This enabled the team
to spend less time tuning obstacle avoidance and more time working on and testing
other aspects of the system, especially during the limited real testing runs.

Figure 12: Overhead view of the robot base. The motors and block detector were

mounted here and the block would be picked up using the ramp.

The rover did have some weaknesses in the team’s opinion. The first issue the

team had with the rover was the compass sensor not behaving as expected. It was not
linear in the trial demonstrations and was observed to not have a one-to-one
relationship with the values it provided and its orientation in the world. During the “ua”
demo, the sensor values go from 65º to 110º, then back to 70º while the rover was
rotated less than 180º. This means there were multiple possible real headings for
sensor values in the range of 70º to 110º. The team only regained some faith in the
compass after discussion with other teams and reviewing their trials to verify that the
compass did indeed behave better in the maze itself, and reintegrated it into the code in
a limited capacity as mentioned in the “Localization” section. The team would suggest a
different compass be used in the future, either a direct replacement (should the unit on
the rover be simply damaged) or a replacement with a different compass module.

17

The team also had feedback regarding the ultrasonic sensors, in that the addition
of more would have been helpful for block detection. This is primarily to help detect the
block if its face is not parallel to the main detector by mounting additional ones in the
vacant spaces on the base (shown in Figure 12) at an angle relative to the centre
ultrasonic sensor. Additionally these could help prevent false readings of the corner, as
the team encountered, by ensuring most of the sensors on the bottom detected the
block. The modification to mount the ultrasonic sensors vertically for obstacle avoidance
was a nice trick that the team will remember going forward. It allowed for better readings
of the surroundings especially around edges, and spreading the two ultrasonic sensors
used for measuring alignment to the walls so the difference between them was more
pronounced.

Although not possible to implement given the nature of the course during

COVID-19, the team learned the importance of splitting computation and
decision-making between the main controlling computer and the microcontroller on the
rover. There was high latency on any communication over bluetooth (roughly one
second) so providing the robot with multiple instructions was time consuming, especially
for repeated tasks such as scanning the environment. The power of off loading
computation to the rover was shown in the development of the “ua” command during the
semester. Initially, each ultrasonic sensor had to be checked individually, taking 5
seconds to check all five sensors for obstacle avoidance once, cutting it down to 1
second to average two readings from all sensors, to eventually marginally over 1
second if more samples were requested using “ua-#” command. If the team does a
similar project in the future, they will remember to consider offloading these repeated
operations to the microcontroller to improve operation speed.

Reflecting on the code the team created, there were several improvements that

were identified. The majority of which are related to dealing with the imperfect reality the
rover operated in. Most of these issues specifically relate to block acquisition, which
also was the least tested part of the rover control algorithm.

An improvement that could have been implemented in the team’s code for better

localization would be to compare the compass heading to the estimated heading for a
node. If the real heading matched the calculated heading for the node, it would be
marked as a possible location for the rover. If they did not match the result would not be
recorded. This would help reduce the redundant matches for wall method and false
positives for the clearance method.

The rover didn’t have a system to avoid mistaking the corners of obstacles as

blocks nor did it have any method of verifying, let alone handling, if it missed the block,

18

either during its scan due to the block not being aligned with the rover or it not properly
grabbing it. A possible counter to not finding the block at any point would be performing
a blind sweep of the entire LZ trying to grab the block in every square. The rover could
also be set to check the block was successfully grabbed and stowed using the bottom
ultrasonic sensor. However, since the rover successfully completed the task without
these measures being implemented, they were never added. The principle of the design
and the methods used to detect the root causes to address will be useful tools to
takeaway for the team.

Overall, the team will walk away from this project having a better understanding

of the systems that compose an autonomous rover, including the extensive mechanical,
electrical, and programming design that is required. As was seen in the project, these
types of design are intrinsically linked in mechatronics design. The design of the
mechanical system will impact how easy it is to code the movements of the rover. The
design of the electrical system will impact the way in which the mechanical design is
approached in order to properly place each component. During this project, there were
many issues with, not only the team’s conceptual design, but also the rover that was
built and used for testing. This resulted in aspects of the design having to be modified
throughout the process, such as adjusting the location of the wheels for better turning,
changing the mounting of the ultrasonic sensors for better readings, etc. What this
shows is how intricate and iterative mechatronics design is. The team had a small
glimpse into how this works and will utilize what was learned moving forward in their
careers.

19

Appendix A: Contribution Table

Contributions graded as; 1 - small amount, 3 - majority, blank for none.

Table 2: Contribution

20

 Catherine Maximilian Savo

Executive
Summary

3

Obstacle
Avoidance

 3

Navigation and
Localization

 3

Block Pickup 3

Integration 3

Results 3

Discussion 2 2

